Cathode-supported SOFC using a highly conductive lanthanum aluminate-based electrolyte

Kuan-Zong Fung, Te Yuan Chen

研究成果: Article

13 引文 (Scopus)

摘要

A newly-developed, highly conductive, and cost-effective LaAlO 3-based perovskite was used as a solid electrolyte to replace costly LaGaO3 in this study. The La0.9Ba0.1Al 0.9Y0.1O3 (LBAYO) solid electrolyte was fabricated by codoping 10 at.% Ba and 10 at.% Y into the cation sublattice of LaAlO3. The conductivity of the doubly doped La0.9Ba 0.1Al0.9Y0.1 O3 was enhanced to 184 × 10- 4 S cm- 1 which is about 50 times higher than that of the undoped one at 800 °C. Cathode-supported cells consisting of Ni/yttria-stabilized zirconia (Ni/YSZ) anode, a thin LBAYO electrolyte (~ 63 μm), a samarium doped ceria (SDC) interlayer, and a lanthanum strontium manganite (LSM) cathode were assembled and tested. The LBAYO electrolyte film was first prepared on conductive LSM substrates using the electrophoretic deposition (EPD) technique. The cathode-supported structure, consisting of an LBAYO film on a porous LSM substrate, was co-fired at 1450 °C for 2 h. A crack-free LBAYO film with a uniform thickness supported on a porous LSM substrate was obtained. Subsequently, a 10 μm-thick SDC buffer interlayer between the electrolyte and 30 μm-thick NiO/YSZ anode was screen-printed and fired on the electrolyte film. A 10-day test showed essentially no degradation on the output power from the cell using the LBAYO electrolyte. These tests convincingly demonstrated the feasibility of an SOFC using LBAYO as the electrolyte when operated at temperatures ranging from 600 °C to 800 °C.

原文English
頁(從 - 到)64-68
頁數5
期刊Solid State Ionics
188
發行號1
DOIs
出版狀態Published - 2011 四月 22

指紋

Lanthanum
Solid oxide fuel cells (SOFC)
lanthanum
Electrolytes
Strontium
Cathodes
cathodes
electrolytes
strontium
Samarium
samarium
Cerium compounds
Solid electrolytes
solid electrolytes
yttria-stabilized zirconia
interlayers
Anodes
anodes
Substrates
cell cathodes

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

引用此文

@article{c6d4e1069ef74bee8eec35f72807773e,
title = "Cathode-supported SOFC using a highly conductive lanthanum aluminate-based electrolyte",
abstract = "A newly-developed, highly conductive, and cost-effective LaAlO 3-based perovskite was used as a solid electrolyte to replace costly LaGaO3 in this study. The La0.9Ba0.1Al 0.9Y0.1O3 (LBAYO) solid electrolyte was fabricated by codoping 10 at.{\%} Ba and 10 at.{\%} Y into the cation sublattice of LaAlO3. The conductivity of the doubly doped La0.9Ba 0.1Al0.9Y0.1 O3 was enhanced to 184 × 10- 4 S cm- 1 which is about 50 times higher than that of the undoped one at 800 °C. Cathode-supported cells consisting of Ni/yttria-stabilized zirconia (Ni/YSZ) anode, a thin LBAYO electrolyte (~ 63 μm), a samarium doped ceria (SDC) interlayer, and a lanthanum strontium manganite (LSM) cathode were assembled and tested. The LBAYO electrolyte film was first prepared on conductive LSM substrates using the electrophoretic deposition (EPD) technique. The cathode-supported structure, consisting of an LBAYO film on a porous LSM substrate, was co-fired at 1450 °C for 2 h. A crack-free LBAYO film with a uniform thickness supported on a porous LSM substrate was obtained. Subsequently, a 10 μm-thick SDC buffer interlayer between the electrolyte and 30 μm-thick NiO/YSZ anode was screen-printed and fired on the electrolyte film. A 10-day test showed essentially no degradation on the output power from the cell using the LBAYO electrolyte. These tests convincingly demonstrated the feasibility of an SOFC using LBAYO as the electrolyte when operated at temperatures ranging from 600 °C to 800 °C.",
author = "Kuan-Zong Fung and Chen, {Te Yuan}",
year = "2011",
month = "4",
day = "22",
doi = "10.1016/j.ssi.2010.09.035",
language = "English",
volume = "188",
pages = "64--68",
journal = "Solid State Ionics",
issn = "0167-2738",
publisher = "Elsevier",
number = "1",

}

Cathode-supported SOFC using a highly conductive lanthanum aluminate-based electrolyte. / Fung, Kuan-Zong; Chen, Te Yuan.

於: Solid State Ionics, 卷 188, 編號 1, 22.04.2011, p. 64-68.

研究成果: Article

TY - JOUR

T1 - Cathode-supported SOFC using a highly conductive lanthanum aluminate-based electrolyte

AU - Fung, Kuan-Zong

AU - Chen, Te Yuan

PY - 2011/4/22

Y1 - 2011/4/22

N2 - A newly-developed, highly conductive, and cost-effective LaAlO 3-based perovskite was used as a solid electrolyte to replace costly LaGaO3 in this study. The La0.9Ba0.1Al 0.9Y0.1O3 (LBAYO) solid electrolyte was fabricated by codoping 10 at.% Ba and 10 at.% Y into the cation sublattice of LaAlO3. The conductivity of the doubly doped La0.9Ba 0.1Al0.9Y0.1 O3 was enhanced to 184 × 10- 4 S cm- 1 which is about 50 times higher than that of the undoped one at 800 °C. Cathode-supported cells consisting of Ni/yttria-stabilized zirconia (Ni/YSZ) anode, a thin LBAYO electrolyte (~ 63 μm), a samarium doped ceria (SDC) interlayer, and a lanthanum strontium manganite (LSM) cathode were assembled and tested. The LBAYO electrolyte film was first prepared on conductive LSM substrates using the electrophoretic deposition (EPD) technique. The cathode-supported structure, consisting of an LBAYO film on a porous LSM substrate, was co-fired at 1450 °C for 2 h. A crack-free LBAYO film with a uniform thickness supported on a porous LSM substrate was obtained. Subsequently, a 10 μm-thick SDC buffer interlayer between the electrolyte and 30 μm-thick NiO/YSZ anode was screen-printed and fired on the electrolyte film. A 10-day test showed essentially no degradation on the output power from the cell using the LBAYO electrolyte. These tests convincingly demonstrated the feasibility of an SOFC using LBAYO as the electrolyte when operated at temperatures ranging from 600 °C to 800 °C.

AB - A newly-developed, highly conductive, and cost-effective LaAlO 3-based perovskite was used as a solid electrolyte to replace costly LaGaO3 in this study. The La0.9Ba0.1Al 0.9Y0.1O3 (LBAYO) solid electrolyte was fabricated by codoping 10 at.% Ba and 10 at.% Y into the cation sublattice of LaAlO3. The conductivity of the doubly doped La0.9Ba 0.1Al0.9Y0.1 O3 was enhanced to 184 × 10- 4 S cm- 1 which is about 50 times higher than that of the undoped one at 800 °C. Cathode-supported cells consisting of Ni/yttria-stabilized zirconia (Ni/YSZ) anode, a thin LBAYO electrolyte (~ 63 μm), a samarium doped ceria (SDC) interlayer, and a lanthanum strontium manganite (LSM) cathode were assembled and tested. The LBAYO electrolyte film was first prepared on conductive LSM substrates using the electrophoretic deposition (EPD) technique. The cathode-supported structure, consisting of an LBAYO film on a porous LSM substrate, was co-fired at 1450 °C for 2 h. A crack-free LBAYO film with a uniform thickness supported on a porous LSM substrate was obtained. Subsequently, a 10 μm-thick SDC buffer interlayer between the electrolyte and 30 μm-thick NiO/YSZ anode was screen-printed and fired on the electrolyte film. A 10-day test showed essentially no degradation on the output power from the cell using the LBAYO electrolyte. These tests convincingly demonstrated the feasibility of an SOFC using LBAYO as the electrolyte when operated at temperatures ranging from 600 °C to 800 °C.

UR - http://www.scopus.com/inward/record.url?scp=79955020380&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79955020380&partnerID=8YFLogxK

U2 - 10.1016/j.ssi.2010.09.035

DO - 10.1016/j.ssi.2010.09.035

M3 - Article

AN - SCOPUS:79955020380

VL - 188

SP - 64

EP - 68

JO - Solid State Ionics

JF - Solid State Ionics

SN - 0167-2738

IS - 1

ER -