TY - JOUR
T1 - Characterization of Perturbing Actions by Verteporfin, a Benzoporphyrin Photosensitizer, on Membrane Ionic Currents
AU - Huang, Mei Han
AU - Liu, Ping Yen
AU - Wu, Sheng Nan
N1 - Funding Information:
This study that led to the composition of this manuscript was supported in part by National Cheng Kung University (D106-35A13, D107-F2519, and NCKUH-10709001 to S-NW), Tainan City, Taiwan. The authors would like to acknowledge the technical assistance of Kaisen Lee for helping earlier work in this study. S-NW received a Talent Award for the Outstanding Researchers from Ministry of Education, Taiwan.
Publisher Copyright:
© Copyright © 2019 Huang, Liu and Wu.
PY - 2019/8/22
Y1 - 2019/8/22
N2 - Verteporfin (VP), a benzoporphyrin derivative, has been clinically tailored as a photosensitizer and recently known to suppress YAP-TEAD complex accompanied by suppression of the growth in an array of neoplastic cells. However, the detailed information is little available regarding possible modifications of it and its related compounds on transmembrane ionic currents, despite its growing use in clinical settings. In this study, from whole cell recordings, VP (0.3–100 μM) increased the amplitude of Ca2+-activated K+ currents (IK(Ca)) in pituitary tumor (GH3) cells in a concentration-dependent manner with an EC50 value of 2.4 μM. VP-stimulated IK(Ca) in these cells was suppressed by further addition of either paxilline, iberiotoxin, or dithiothreitol, but not by that of tobultamide or TRAM-39. VP at a concentration of 10 μM mildly suppressed the amplitude of delayed-rectifier K+ current; however, it had minimal effects on M-type K+ current. In cell-attached current recordings, addition of VP to the recording medium enhanced the activity of large-conductance Ca2+-activated K+ (BKCa) channels. In the presence of VP, additional illumination with light intensity of 5.5 mW/cm2 raised the probability of BKCa-channel openings further. Addition of VP decreased the peak amplitude of L-type Ca2+ current together with slowed inactivation time course of the current; however, it failed to modify voltage-gated Na+ current. Illumination of GH3 cells in continued presence of VP also induced a non-selective cation current. Additionally, VP increased the activity of BKCa channels in human 13-06-MG glioma cells with an EC50 value of 1.9 μM. Therefore, the effects of VP on ionic currents described herein tend to be upstream of its inhibition of YAP-TEAD complex and they are conceivably likely to contribute to the underlying mechanisms through which it and its structurally similar compounds effect the modifications in functional activities of pituitary or glial neoplastic cells, if the in vivo findings occur.
AB - Verteporfin (VP), a benzoporphyrin derivative, has been clinically tailored as a photosensitizer and recently known to suppress YAP-TEAD complex accompanied by suppression of the growth in an array of neoplastic cells. However, the detailed information is little available regarding possible modifications of it and its related compounds on transmembrane ionic currents, despite its growing use in clinical settings. In this study, from whole cell recordings, VP (0.3–100 μM) increased the amplitude of Ca2+-activated K+ currents (IK(Ca)) in pituitary tumor (GH3) cells in a concentration-dependent manner with an EC50 value of 2.4 μM. VP-stimulated IK(Ca) in these cells was suppressed by further addition of either paxilline, iberiotoxin, or dithiothreitol, but not by that of tobultamide or TRAM-39. VP at a concentration of 10 μM mildly suppressed the amplitude of delayed-rectifier K+ current; however, it had minimal effects on M-type K+ current. In cell-attached current recordings, addition of VP to the recording medium enhanced the activity of large-conductance Ca2+-activated K+ (BKCa) channels. In the presence of VP, additional illumination with light intensity of 5.5 mW/cm2 raised the probability of BKCa-channel openings further. Addition of VP decreased the peak amplitude of L-type Ca2+ current together with slowed inactivation time course of the current; however, it failed to modify voltage-gated Na+ current. Illumination of GH3 cells in continued presence of VP also induced a non-selective cation current. Additionally, VP increased the activity of BKCa channels in human 13-06-MG glioma cells with an EC50 value of 1.9 μM. Therefore, the effects of VP on ionic currents described herein tend to be upstream of its inhibition of YAP-TEAD complex and they are conceivably likely to contribute to the underlying mechanisms through which it and its structurally similar compounds effect the modifications in functional activities of pituitary or glial neoplastic cells, if the in vivo findings occur.
UR - http://www.scopus.com/inward/record.url?scp=85072737771&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072737771&partnerID=8YFLogxK
U2 - 10.3389/fchem.2019.00566
DO - 10.3389/fchem.2019.00566
M3 - Article
AN - SCOPUS:85072737771
SN - 2296-2646
VL - 7
JO - Frontiers in Chemistry
JF - Frontiers in Chemistry
M1 - 566
ER -