## 摘要

Symmetry breaking is a characteristic to determine which branch of a bifurcation system follows upon crossing a critical point. Specifically, in spin-orbit torque (SOT) devices, a fundamental question arises: How can the symmetry of the perpendicular magnetic moment be broken by the in-plane spin polarization? Here, we show that the chiral symmetry breaking by the antisymmetric Dzyaloshinskii-Moriya interaction (DMI) can induce the deterministic SOT switching of the perpendicular magnetization. By introducing a gradient of saturation magnetization or magnetic anisotropy, the dynamic noncollinear spin textures are formed under the current-driven SOT, and thus, the chiral symmetry of these dynamic spin textures is broken by the DMI, resulting in the deterministic magnetization switching. We introduce a strategy to induce an out-of-plane (z) gradient of magnetic properties as a practical solution for the wafer-scale manufacture of SOT devices.

原文 | English |
---|---|

頁（從 - 到） | 515-521 |

頁數 | 7 |

期刊 | Nano letters |

卷 | 21 |

發行號 | 1 |

DOIs | |

出版狀態 | Published - 2021 1月 13 |

## All Science Journal Classification (ASJC) codes

- 生物工程
- 化學 (全部)
- 材料科學(全部)
- 凝聚態物理學
- 機械工業