Chirality resolution via series controlling angular momentum-LSPR component in multi-illumination environment

Yu Kai Liao, Yi Sheng Lai, Yu Lin Chen, Yen Hsun Su

研究成果: Article同行評審

摘要

Highly efficient chirality resolution method and widely adaptive chirality sensor of ZnO nanorods (ZnONRs) decorated with multiple kinds of noble metal nanoparticles (NMNPs) by optically modulating angular momentum of electrons excitation are introduced. The enantiomers of glutamine functionalized different layers of NMNPs decorated ZnONRs can be easily recognized by modulating angular momentum of electron excitation controlled by the 405 nm, 532 nm, and 635 nm laser irradiations from the split currents in J-V curve. The improving sensitivity of multilayer NMNPs component is investigated, which exhibits the maximum spin polarization of L-glutamine functionalized one to four layer is 27.52 % under 532 nm, 27.81 % under 635 nm, and 26.53 % under 405 nm laser, showing over 1000 % enhancement compared to the one of bare ZnONRs. Above all, this sequence NMNPs component provide the variable selectivity to chirality resolution dependent on illumination environment, which takes few mins to do the purification of a specific amino acid by the novel transmittance measurement.

原文English
文章編號133483
期刊Sensors and Actuators B: Chemical
382
DOIs
出版狀態Published - 2023 5月 1

All Science Journal Classification (ASJC) codes

  • 電子、光磁材料
  • 儀器
  • 凝聚態物理學
  • 表面、塗料和薄膜
  • 金屬和合金
  • 電氣與電子工程
  • 材料化學

指紋

深入研究「Chirality resolution via series controlling angular momentum-LSPR component in multi-illumination environment」主題。共同形成了獨特的指紋。

引用此