Chromatic polynomials for lattice strips with cyclic boundary conditions

研究成果: Article同行評審

9 引文 斯高帕斯(Scopus)


The zero-temperature q-state Potts model partition function for a lattice strip of fixed width Ly and arbitrary length Lx has the form P(G,q) = ∑j = 1NG, λ cG, jG, j)Lx, and is equivalent to the chromatic polynomial for this graph. We present exact zero-temperature partition functions for strips of several lattices with (FBCy, PBCx), i.e., cyclic, boundary conditions. In particular, the chromatic polynomial of a family of generalized dodecahedra graphs is calculated. The coefficient cG, j of degree d in q is c(d) = U2d(√q/2), where Un(x) is the Chebyshev polynomial of the second kind. We also present the chromatic polynomial for the strip of the square lattice with (PBCy, PBCx), i.e., toroidal, boundary conditions and width Ly = 4 with the property that each set of four vertical vertices forms a tetrahedron. A number of interesting and novel features of the continuous accumulation set of the chromatic zeros, B are found.

頁(從 - 到)495-522
期刊Physica A: Statistical Mechanics and its Applications
出版狀態Published - 2001 七月 15

All Science Journal Classification (ASJC) codes

  • 統計與概率
  • 凝聚態物理學


深入研究「Chromatic polynomials for lattice strips with cyclic boundary conditions」主題。共同形成了獨特的指紋。