摘要
In this paper, a novel BP-CMAC neural network classifier for the classification of liver diseases is proposed. The BP-CMAC neural network takes the advantages of the back-propagation (BP) and CMAC networks. It utilities the CMAC to simplify the input space and forwards to the BP network as inputs. Therefore, it can reduce the memory allocation for CMAC network, and speed up the learning process. The BP-CMAC is used to construct the liver disease diagnosis system for testing the liver cyst, hepatoma, and cavernous hemagioma. The overall distinction rate is about 87% even though the symptoms of hepatoma and cavernous hemagioma are very similar.
原文 | English |
---|---|
頁面 | 118-121 |
頁數 | 4 |
出版狀態 | Published - 2005 10月 31 |
事件 | 9th IEEE International Workshop on Cellular Neural Networks and their Applications, CNNA - Hsinchu, Taiwan 持續時間: 2005 5月 28 → 2005 5月 30 |
Other
Other | 9th IEEE International Workshop on Cellular Neural Networks and their Applications, CNNA |
---|---|
國家/地區 | Taiwan |
城市 | Hsinchu |
期間 | 05-05-28 → 05-05-30 |
All Science Journal Classification (ASJC) codes
- 軟體