Clustering of complementary electricity consumers based on their usage patterns

Sheng Ta Chen, Chi Lun Liu, Ming Hung Lee, Min Fung, Wei Guang Teng

研究成果: Conference article


In the electricity market, the real-time balance of electricity generation and consumption is a main task. In view of this, power providers usually sign contracts with their critical consumers (i.e., usually large-scale industrial companies) for managing their capacity demands. On the other hand, aggregators group commercial and residential consumers, and integrate their demands to negotiate with power providers. With a proper grouping of numerous electricity consumers, aggregators help to ensure stable electric supply, and reduce the burden of managing many consumers. In this work, we thus propose a novel data clustering approach to group complementary consumers based on their usage patterns (i.e., daily electricity consumption curves.) Furthermore, we incorporate the technique of discrete wavelet transform to speed up the clustering process. Specifically, approximations reconstructed from only a few wavelet coefficients may precisely capture the shape of original usage patterns. Experimental results based on a real dataset show that our approach is promising in practical applications.

期刊E3S Web of Conferences
出版狀態Published - 2018 十二月 5
事件2018 International Conference on Electrical Engineering and Green Energy, CEEGE 2018 - Tokyo, Japan
持續時間: 2018 六月 12018 六月 3

All Science Journal Classification (ASJC) codes

  • Environmental Science(all)
  • Energy(all)
  • Earth and Planetary Sciences(all)

指紋 深入研究「Clustering of complementary electricity consumers based on their usage patterns」主題。共同形成了獨特的指紋。

  • 引用此