Coarse-grained potential models for phenyl-based molecules: II. Application to fullerenes

Chi Cheng Chiu, Russell DeVane, Michael L. Klein, Wataru Shinoda, Preston B. Moore, Steven O. Nielsen

研究成果: Article同行評審

38 引文 斯高帕斯(Scopus)


The interaction of fullerenes with biological systems and the environment is a topic of current interest. Coarsegrained molecular dynamics (CGMD) simulations are well-suited to investigate some of the factors involved because they provide access to time and length scales that are not accessible using fully atomistic simulation methods. In the case of buckyballs (C60) and single-walled carbon nanotubes (SWNTs), it is necessary to parametrize a CG force field that accurately captures the balance between fullerene-fullerene and fullerene-solvent interactions. Herein, we derive CG force field parameters for C60 and SWNTs by using the optimized benzene parameters from part I [DeVane, R.; Chiu, C.-c; Nielsen, S. O.; Shinoda, W.; Moore, P. B.; Klein, M. L. J. Phys. Chem. B 2010, doi: 10.1021/jp9117369]. Solubility, transfer free energy, and dimerization free-energy data for C60 and SWNTs obtained using the proposed models show excellent agreement with experimental and fully atomistic MD data. In particular, cluster analysis of C60 aggregation in a hydrocarbon melt corroborates the force field parameters. The aggregation behavior of the present CG force field differs considerably from that of models currently in widespread use. The combined results provide a strong basis for applying this model for further large-scale MD studies involving C60 and SWNTs.

頁(從 - 到)6394-6400
期刊Journal of Physical Chemistry B
出版狀態Published - 2010 5月 20

All Science Journal Classification (ASJC) codes

  • 物理與理論化學
  • 表面、塗料和薄膜
  • 材料化學


深入研究「Coarse-grained potential models for phenyl-based molecules: II. Application to fullerenes」主題。共同形成了獨特的指紋。