Comparative indexes, fuel characterization and thermogravimetric- Fourier transform infrared spectrometer-mass spectrogram (TG-FTIR-MS) analysis of microalga Nannochloropsis Oceanica under oxidative and inert torrefaction

Congyu Zhang, Shih Hsin Ho, Wei Hsin Chen, Rupeng Wang

研究成果: Article同行評審

摘要

The torrefaction performances of microalga Nannochloropsis Oceanica under oxidative and inert atmospheres are characterized and compared with each other based on several operating parameters. By conducting several comparative indexes, the results suggest that oxidative torrefaction is more capable of upgrading microalgae due to its relatively lower solid yield and energy input, as well as relatively higher enhancement factor and upgrading energy index. Compared to inert torrefaction, the indexes indicate that oxidative torrefaction at 250 °C for 30 min has higher energy yield (1.02 times) and energy efficiency (2.2 times) but whereas lower energy input (0.4 times). With increasing torrefaction severity, the pyrolysis curve gradually becomes smooth and shift to a high-temperature zone. The peak temperatures of torrefied microalgae present an increasing trend, especially in the oxidative atmosphere. After oxidative torrefaction, microalgal solid biofuel is upgraded as peat and lignite, from the viewpoint of elemental composition. Furthermore, oxidative torrefaction is more suitable than inert torrefaction for producing bio-oil which mainly contains dianhydromannitol, neophytadiene, and palmitoleic acid. The TG-FTIR-MS results uncover the pyrolysis characteristics and reactivity of torrefied microalgae, and elucidate that oxidative torrefied microalgae is more reactive.

原文English
文章編號120824
期刊Energy
230
DOIs
出版狀態Published - 2021 九月 1

All Science Journal Classification (ASJC) codes

  • 土木與結構工程
  • 建築與營造
  • 建模與模擬
  • 可再生能源、永續發展與環境
  • 燃料技術
  • 能源工程與電力技術
  • 污染
  • 能源(全部)
  • 機械工業
  • 工業與製造工程
  • 管理、監督、政策法律
  • 電氣與電子工程

指紋

深入研究「Comparative indexes, fuel characterization and thermogravimetric- Fourier transform infrared spectrometer-mass spectrogram (TG-FTIR-MS) analysis of microalga Nannochloropsis Oceanica under oxidative and inert torrefaction」主題。共同形成了獨特的指紋。

引用此