Comparative study on nitrogen removal and functional genes response between surface flow constructed wetland and floating treatment wetland planted with Iris pseudacorus

Xiaoyi Zhang, Lina Zha, Panyu Jiang, Xiayu Wang, Kewei Lu, Shengbing He, Jungchen Huang, Weili Zhou

研究成果: Article同行評審

5 引文 斯高帕斯(Scopus)

摘要

Excessive nitrogen accumulated from wastewater with low C/N ratio is a new threat to water ecosystem. In this study, surface flow constructed wetland (SFCW) and floating treatment wetland (FTW) planted with Iris pseudacorus were set in parallel for nitrogen removal. The nitrogen removal efficiencies and pathways, as well as the abundance and functional diversities of the microbial community, were investigated. The results demonstrated that SFCW generally had better nitrogen removal performance than FTW did over four seasons. The average total nitrogen removal efficiency was 66.0% and 43.8% in SFCW and FTW, respectively. The plant uptake played a vital role in nitrogen reduction, which accounted for 29.3% and 7.7% of the total removed nitrogen in SFCW and FTW, respectively. A combination of high-throughput sequencing and quantitative polymerase chain reaction analysis revealed that the two wetland systems had complete nitrogen cycling, and the narG gene was the dominant nitrogen-transformation functional gene in both systems. More abundant denitrifying genes in SFCW than in FTW were also responsible for higher removal capacity of nitrogen. The results suggest that the planting pattern of wetland vegetation has an important impact on nitrogen removal efficiency by influencing the plant absorption and the development of microbial communities.

原文English
頁(從 - 到)23696-23706
頁數11
期刊Environmental Science and Pollution Research
26
發行號23
DOIs
出版狀態Published - 2019 8月 1

All Science Journal Classification (ASJC) codes

  • 環境化學
  • 污染
  • 健康、毒理學和誘變

指紋

深入研究「Comparative study on nitrogen removal and functional genes response between surface flow constructed wetland and floating treatment wetland planted with Iris pseudacorus」主題。共同形成了獨特的指紋。

引用此