TY - JOUR
T1 - Competition between polyphosphate- and glycogen-accumulating organisms in enhanced-biological-phosphorus-removal systems
T2 - Effect of temperature and sludge age
AU - Whang, Liang Ming
AU - Park, Jae Kwang
PY - 2006/1
Y1 - 2006/1
N2 - Temperature and sludge age were found to be important factors in determining the outcome of competition between polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating non-polyphosphate organisms (GAOs) and the resultant stability of enhanced-biological-phosphorus removal (EBPR). At 20°C and a 10-day sludge age, PAOs were dominant in an anaerobic/aerobic (A/O) sequencing-batch reactor (SBR), as a result of their higher anaerobic-acetate-uptake rate and aerobic-biomass yield than GAOs. However, at 30°C and a 10-day sludge age, GAOs were able to outcompete PAOs in the A/O SBR because of their higher anaerobic-acetate-uptake rate than PAOs. At 30°C and a 5-day sludge age, GAOs coexisted with PAOs in the A/O SBR, resulting in unstable EBPR performance. At 30°C, reducing the sludge age from 5 to 3 days improved the EBPR efficiency drastically, and the EBPR performance was stable. The maximum specific-anaerobic-acetate-uptake rates of GAO-enriched sludge were affected by temperature with the Arrhenius temperature coefficient θ of 0.042 (°C-1) between 10 and 30°C. The effect of sludge age (5 and 10 days) on the maximum specific-anaerobic-acetate-uptake rates of GAO-enriched activated sludge, however, was not significant. For the PAO-enriched activated sludge, the maximum specific-anaerobic-acetate-uptake rate did not change significantly between 20 and 30°C, but significantly increased from 0.38 to 0.52 mmol-C/mmol-C/h as the sludge age decreased from 10 to 3 days at 30°C.
AB - Temperature and sludge age were found to be important factors in determining the outcome of competition between polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating non-polyphosphate organisms (GAOs) and the resultant stability of enhanced-biological-phosphorus removal (EBPR). At 20°C and a 10-day sludge age, PAOs were dominant in an anaerobic/aerobic (A/O) sequencing-batch reactor (SBR), as a result of their higher anaerobic-acetate-uptake rate and aerobic-biomass yield than GAOs. However, at 30°C and a 10-day sludge age, GAOs were able to outcompete PAOs in the A/O SBR because of their higher anaerobic-acetate-uptake rate than PAOs. At 30°C and a 5-day sludge age, GAOs coexisted with PAOs in the A/O SBR, resulting in unstable EBPR performance. At 30°C, reducing the sludge age from 5 to 3 days improved the EBPR efficiency drastically, and the EBPR performance was stable. The maximum specific-anaerobic-acetate-uptake rates of GAO-enriched sludge were affected by temperature with the Arrhenius temperature coefficient θ of 0.042 (°C-1) between 10 and 30°C. The effect of sludge age (5 and 10 days) on the maximum specific-anaerobic-acetate-uptake rates of GAO-enriched activated sludge, however, was not significant. For the PAO-enriched activated sludge, the maximum specific-anaerobic-acetate-uptake rate did not change significantly between 20 and 30°C, but significantly increased from 0.38 to 0.52 mmol-C/mmol-C/h as the sludge age decreased from 10 to 3 days at 30°C.
UR - http://www.scopus.com/inward/record.url?scp=32544431601&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=32544431601&partnerID=8YFLogxK
U2 - 10.2175/106143005X84459
DO - 10.2175/106143005X84459
M3 - Article
C2 - 16553160
AN - SCOPUS:32544431601
SN - 1061-4303
VL - 78
SP - 4
EP - 11
JO - Water Environment Research
JF - Water Environment Research
IS - 1
ER -