Compressive large-scale image sensing

Wei Jie Liang, Gang Xuan Lin, Chun Shien Lu

研究成果: Conference contribution

1 引文 斯高帕斯(Scopus)

摘要

Cost-efficient compressive sensing of large-scale images with fast reconstructed high-quality results is very challenging. In this paper, we propose a new compressive large-scale image sensing method, composed of operator-based strategy in the context of fixed point continuation technique and weighted LASSO with tree structure sparsity pattern. The main characteristic of our method is free from any assumptions and restrictions. The feasibility of our method is verified via computational complexity and convergence analyses, extensive simulations, and comparisons with state-of-the-art algorithms.

原文English
主出版物標題2015 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2015
發行者Institute of Electrical and Electronics Engineers Inc.
頁面378-382
頁數5
ISBN(電子)9781479975914
DOIs
出版狀態Published - 2016 2月 23
事件IEEE Global Conference on Signal and Information Processing, GlobalSIP 2015 - Orlando, United States
持續時間: 2015 12月 132015 12月 16

出版系列

名字2015 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2015

Other

OtherIEEE Global Conference on Signal and Information Processing, GlobalSIP 2015
國家/地區United States
城市Orlando
期間15-12-1315-12-16

All Science Journal Classification (ASJC) codes

  • 資訊系統
  • 訊號處理

指紋

深入研究「Compressive large-scale image sensing」主題。共同形成了獨特的指紋。

引用此