Conditional Sentence Rephrasing without Parallel Training Corpus

Yen Ting Lee, Cheng Te Li, Shou De Lin

研究成果: Conference contribution

摘要

This paper aims to rephrase a sentence with a given condition, and the generated sentence should be similar to the origin sentence and satisfy the given condition without parallel training corpus. We propose a conditional sentence VAE (CS-VAE) model to solve the task. CS-VAE is trained as an autoencoder, along with the condition control on the generated sentence with the same semantics. With the experimental demonstration supported, CS-VAE is proven to effectively solve the task with high-quality sentences.

原文English
主出版物標題ICMEW 2022 - IEEE International Conference on Multimedia and Expo Workshops 2022, Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665472180
DOIs
出版狀態Published - 2022
事件2022 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2022 - Taipei City, Taiwan
持續時間: 2022 7月 182022 7月 22

出版系列

名字ICMEW 2022 - IEEE International Conference on Multimedia and Expo Workshops 2022, Proceedings

Conference

Conference2022 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2022
國家/地區Taiwan
城市Taipei City
期間22-07-1822-07-22

All Science Journal Classification (ASJC) codes

  • 人工智慧
  • 電腦科學應用
  • 電腦視覺和模式識別
  • 媒體技術

指紋

深入研究「Conditional Sentence Rephrasing without Parallel Training Corpus」主題。共同形成了獨特的指紋。

引用此