Continuous distance-based skyline queries in road networks

Yuan Ko Huang, Chia Heng Chang, Chiang Lee

研究成果: Article同行評審

43 引文 斯高帕斯(Scopus)


In recent years, the research community has introduced various methods for processing skyline queries in road networks. A skyline query retrieves the skyline points that are not dominated by others in terms of static and dynamic attributes (i.e., the road distance). This paper addresses the issue of efficiently processing continuous skyline queries in road networks. Two novel and important distance-based skyline queries are presented, namely, the continuous dε-skyline query (Cdε-SQ) and the continuous k nearest neighbor-skyline query (Cknn-SQ). A grid index is first designed to effectively manage the information of data objects and then two algorithms are proposed, the Cdε-SQ algorithm and the Cdε-SQ algorithm, which are combined with the grid index to answer the Cdε-SQ. Similarly, the Cknn-SQ algorithm and the Cknn-SQ algorithm are developed to efficiently process the Cknn-SQ. Extensive experiments using real road network datasets demonstrate the effectiveness and the efficiency of the proposed algorithms.

頁(從 - 到)611-633
期刊Information Systems
出版狀態Published - 2012 11月

All Science Journal Classification (ASJC) codes

  • 軟體
  • 資訊系統
  • 硬體和架構


深入研究「Continuous distance-based skyline queries in road networks」主題。共同形成了獨特的指紋。