Contributions by MutL homologues Mlh3 and Pms2 to DNA mismatch repair and tumor suppression in the mouse

Peng Chieh Chen, Sandra Dudley, Wayne Hagen, Diana Dizon, Leslie Paxton, Denise Reichow, Song Ro Yoon, Kan Yang, Norman Arnheim, R. Michael Liskay, Steven M. Lipkin

研究成果: Article同行評審

81 引文 斯高帕斯(Scopus)


Germ line DNA mismatch repair mutations in MLH1 and MSH2 underlie the vast majority of hereditary non-polyposis colon cancer. Four mammalian homologues of Escherichia coli MutL heterodimerize to form three distinct complexes: MLH1/PMS2, MLH1/MLH3, and MLH1/PMS1. Although MLH1/PMS2 is generally thought to have the major MutL activity, the precise contributions of each MutL heterodimer to mismatch repair functions are poorly understood. Here, we show that Mlh3 contributes to mechanisms of tumor suppression in the mouse. Mlh3 deficiency alone causes microsatellite instability, impaired DNA-damage response, and increased gastrointestinal tumor susceptibility. Furthermore, Mlh3;Pms2 double-deficient mice have tumor susceptibility, shorter life span, microsatellite instability, and DNA-damage response phenotypes that are indistinguishable from Mlh1-deficient mice. Our data support previous results from budding yeast that show partial functional redundancy between MLH3 and PMS2 orthologues for mutation avoidance and show a role for Mlh3 in gastrointestinal and extragastrointestinal tumor suppression. The data also suggest a mechanistic basis for the more severe mismatch repair-related phenotypes and cancer susceptibility in Mlh1- versus Mlh3- or Pms2-deficient mice. Contributions by both MLH1/MLH3 and MLH1/PMS2 complexes to mechanisms of mismatch repair-mediated tumor suppression, therefore, provide an explanation why, among MutL homologues, only germ line mutations in MLH1 are common in hereditary nonpolyposis colon cancer.

頁(從 - 到)8662-8670
期刊Cancer Research
出版狀態Published - 2005 10月 1

All Science Journal Classification (ASJC) codes

  • 腫瘤科
  • 癌症研究


深入研究「Contributions by MutL homologues Mlh3 and Pms2 to DNA mismatch repair and tumor suppression in the mouse」主題。共同形成了獨特的指紋。