TY - JOUR

T1 - Cooling performance of mini-channel heat sink with water-based nano-PCM emulsion-An experimental study

AU - Ho, C. J.

AU - Hsu, Shao Teng

AU - Yang, Tien Fu

AU - Chen, Bo Lin

AU - Rashidi, Saman

AU - Yan, Wei Mon

N1 - Funding Information:
This study was supported by both Higher Education Sprout Project from Ministry of Education through “Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors” and Ministry of Science and Technology ( MOST 106-2221-E-027-102-MY2 ) in Taiwan.
Publisher Copyright:
© 2021 Elsevier Masson SAS

PY - 2021/6

Y1 - 2021/6

N2 - In this investigation, the cooling characteristics of mini-channel heat sink with the water-based nano-phase change material emulsions are examined experimentally. The n-eicosane nanoparticles and the pure water are considered as the as the phase change material and base fluid, respectively. The fluid flow and convection heat transfer in the mini channel heat sink are studied at different parameter ranges: the volumetric flow rate varied from Q˙ = 60 cm3 min−1 to 600 cm3 min−1, three values of the heat flux imposed on the bottom wall of the heat sinks including qh″ = 3.2 W cm−2, 3.95 W cm−2, and 4.78 W cm−2, and the mass fraction of n-eicosane nanoparticles varied from ωpcm = 0%–10%. The influences of these parameters on the friction factor, wall temperature, heat transfer effectiveness, Nusselt number, figure of merit, coefficient of performance, and thermal resistances are investigated. It is concluded that for the low volumetric flow rate and the heat fluxes of heat flux of 3.20 W cm−2, 3.95 W cm−2, and 4.78 W cm−2, using the n-eicosane nanoparticles with larger values of mass fraction is more proper to decrease the wall temperature. For low value of heat flux, the value of the convective heat transfer effectiveness is larger than unity for most values of Reynolds number. The maximum figure of merit index of 1.098 can be achieved at the Reynolds number of 1381, the heat flux of 4.78 W cm−2, and the mass fraction of 2%. The figure of merit index is decreased with boosting the mass fraction of n–eicosane particles. The figure of merit index is decreased about 44% with boosting the mass fraction of n–eicosane particles from 2% to 10% for the heat flux of 3.20 W cm−2. The usage of n-eicosane nanoparticles with the concentration of 2% results in the lower thermal resistances in comparison to the case of pure water. The difference between the thermal resistances for various mass fractions of n-eicosane nanoparticles decreases as the heat flux increases.

AB - In this investigation, the cooling characteristics of mini-channel heat sink with the water-based nano-phase change material emulsions are examined experimentally. The n-eicosane nanoparticles and the pure water are considered as the as the phase change material and base fluid, respectively. The fluid flow and convection heat transfer in the mini channel heat sink are studied at different parameter ranges: the volumetric flow rate varied from Q˙ = 60 cm3 min−1 to 600 cm3 min−1, three values of the heat flux imposed on the bottom wall of the heat sinks including qh″ = 3.2 W cm−2, 3.95 W cm−2, and 4.78 W cm−2, and the mass fraction of n-eicosane nanoparticles varied from ωpcm = 0%–10%. The influences of these parameters on the friction factor, wall temperature, heat transfer effectiveness, Nusselt number, figure of merit, coefficient of performance, and thermal resistances are investigated. It is concluded that for the low volumetric flow rate and the heat fluxes of heat flux of 3.20 W cm−2, 3.95 W cm−2, and 4.78 W cm−2, using the n-eicosane nanoparticles with larger values of mass fraction is more proper to decrease the wall temperature. For low value of heat flux, the value of the convective heat transfer effectiveness is larger than unity for most values of Reynolds number. The maximum figure of merit index of 1.098 can be achieved at the Reynolds number of 1381, the heat flux of 4.78 W cm−2, and the mass fraction of 2%. The figure of merit index is decreased with boosting the mass fraction of n–eicosane particles. The figure of merit index is decreased about 44% with boosting the mass fraction of n–eicosane particles from 2% to 10% for the heat flux of 3.20 W cm−2. The usage of n-eicosane nanoparticles with the concentration of 2% results in the lower thermal resistances in comparison to the case of pure water. The difference between the thermal resistances for various mass fractions of n-eicosane nanoparticles decreases as the heat flux increases.

UR - http://www.scopus.com/inward/record.url?scp=85100601630&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85100601630&partnerID=8YFLogxK

U2 - 10.1016/j.ijthermalsci.2021.106903

DO - 10.1016/j.ijthermalsci.2021.106903

M3 - Article

AN - SCOPUS:85100601630

SN - 1290-0729

VL - 164

JO - Revue Generale de Thermique

JF - Revue Generale de Thermique

M1 - 106903

ER -