Criterion-robust optimal designs for model discrimination and parameter estimation in Fourier regression models

Mei Mei Zen, Min Hsiao Tsai

研究成果: Article同行評審

23 引文 斯高帕斯(Scopus)

摘要

Consider the problem of discriminating between two competitive Fourier regression on the circle [-π,π] and estimating parameters in the models. To find designs which are efficient for both model discrimination and parameter estimation, Zen and Tsai (some criterion-robust optimal designs for the dual problem of model discrimination and parameter estimation, Indian J. Statist. 64, 322-338) proposed a multiple-objective optimality criterion for polynomial regression models. In this work, taking the same Mγ-criterion, which puts weight γ (0≤γ≤1) for model discrimination and 1-γ for parameter estimation, and using the techniques of projection design, the corresponding Mγ-optimal design for Fourier regression models is explicitly derived in terms of canonical moments. The behavior of the Mγ-optimal designs is investigated under different weighted selection criterion. And the extreme value of the minimum Mγ-efficiency of any Mγ′-optimal design is obtained at γ′=γ*, which results in the Mγ*-optimal design to be served as a criterion-robust optimal design for the problem.

原文English
頁(從 - 到)475-487
頁數13
期刊Journal of Statistical Planning and Inference
124
發行號2
DOIs
出版狀態Published - 2004 九月 1

All Science Journal Classification (ASJC) codes

  • 統計與概率
  • 統計、概率和不確定性
  • 應用數學

指紋

深入研究「Criterion-robust optimal designs for model discrimination and parameter estimation in Fourier regression models」主題。共同形成了獨特的指紋。

引用此