TY - JOUR
T1 - Cruciform DNA Structures Act as Legible Templates for Accelerating Homologous Recombination in Transgenic Animals
AU - Ou-Yang, Huan
AU - Yang, Shiao Hsuan
AU - Chen, Wei
AU - Yang, Shang Hsun
AU - Cidem, Abdulkadir
AU - Sung, Li Ying
AU - Chen, Chuan Mu
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Inverted repeat (IR) DNA sequences compose cruciform structures. Some genetic disorders are the result of genome inversion or translocation by cruciform DNA structures. The present study examined whether exogenous DNA integration into the chromosomes of transgenic animals was related to cruciform DNA structures. Large imperfect cruciform structures were frequently predicted around predestinated transgene integration sites in host genomes of microinjection-based transgenic (Tg) animals (αLA-LPH Tg goat, Akr1A1eGFP/eGFP Tg mouse, and NFκB-Luc Tg mouse) or CRISPR/Cas9 gene-editing (GE) animals (αLA-AP1 GE mouse). Transgene cassettes were imperfectly matched with their predestinated sequences. According to the analyzed data, we proposed a putative model in which the flexible cruciform DNA structures acted as a legible template for DNA integration into linear DNAs or double-strand break (DSB) alleles. To demonstrate this model, artificial inverted repeat knock-in (KI) reporter plasmids were created to analyze the KI rate using the CRISPR/Cas9 system in NIH3T3 cells. Notably, the KI rate of the 5′ homologous arm inverted repeat donor plasmid (5′ IR) with the ROSA gRNA group (31.5%) was significantly higher than the knock-in reporter donor plasmid (KIR) with the ROSA gRNA group (21.3%, p < 0.05). However, the KI rate of the 3′ inverted terminal repeat/inverted repeat donor plasmid (3′ ITRIR) group was not different from the KIR group (23.0% vs. 22.0%). These results demonstrated that the legibility of the sequence with the cruciform DNA existing in the transgene promoted homologous recombination (HR) with a higher KI rate. Our findings suggest that flexible cruciform DNAs folded by IR sequences improve the legibility and accelerate DNA 3′-overhang integration into the host genome via homologous recombination machinery.
AB - Inverted repeat (IR) DNA sequences compose cruciform structures. Some genetic disorders are the result of genome inversion or translocation by cruciform DNA structures. The present study examined whether exogenous DNA integration into the chromosomes of transgenic animals was related to cruciform DNA structures. Large imperfect cruciform structures were frequently predicted around predestinated transgene integration sites in host genomes of microinjection-based transgenic (Tg) animals (αLA-LPH Tg goat, Akr1A1eGFP/eGFP Tg mouse, and NFκB-Luc Tg mouse) or CRISPR/Cas9 gene-editing (GE) animals (αLA-AP1 GE mouse). Transgene cassettes were imperfectly matched with their predestinated sequences. According to the analyzed data, we proposed a putative model in which the flexible cruciform DNA structures acted as a legible template for DNA integration into linear DNAs or double-strand break (DSB) alleles. To demonstrate this model, artificial inverted repeat knock-in (KI) reporter plasmids were created to analyze the KI rate using the CRISPR/Cas9 system in NIH3T3 cells. Notably, the KI rate of the 5′ homologous arm inverted repeat donor plasmid (5′ IR) with the ROSA gRNA group (31.5%) was significantly higher than the knock-in reporter donor plasmid (KIR) with the ROSA gRNA group (21.3%, p < 0.05). However, the KI rate of the 3′ inverted terminal repeat/inverted repeat donor plasmid (3′ ITRIR) group was not different from the KIR group (23.0% vs. 22.0%). These results demonstrated that the legibility of the sequence with the cruciform DNA existing in the transgene promoted homologous recombination (HR) with a higher KI rate. Our findings suggest that flexible cruciform DNAs folded by IR sequences improve the legibility and accelerate DNA 3′-overhang integration into the host genome via homologous recombination machinery.
UR - http://www.scopus.com/inward/record.url?scp=85127424129&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127424129&partnerID=8YFLogxK
U2 - 10.3390/ijms23073973
DO - 10.3390/ijms23073973
M3 - Article
C2 - 35409332
AN - SCOPUS:85127424129
SN - 1661-6596
VL - 23
JO - International journal of molecular sciences
JF - International journal of molecular sciences
IS - 7
M1 - 3973
ER -