TY - JOUR
T1 - Cytoplasmic Plaque Formation in Hemidesmosome Development Is Dependent on SoxF Transcription Factor Function
AU - Oommen, Shelly
AU - Francois, Mathias
AU - Kawasaki, Maiko
AU - Murrell, Melanie
AU - Kawasaki, Katsushige
AU - Porntaveetus, Thantrira
AU - Ghafoor, Sarah
AU - Young, Neville J.
AU - Okamatsu, Yoshimasa
AU - McGrath, John
AU - Koopman, Peter
AU - Sharpe, Paul T.
AU - Ohazama, Atsushi
PY - 2012/9/4
Y1 - 2012/9/4
N2 - Hemidesmosomes are composed of intricate networks of proteins, that are an essential attachment apparatus for the integrity of epithelial tissue. Disruption leads to blistering diseases such as epidermolysis bullosa. Members of the Sox gene family show dynamic and diverse expression patterns during development and mutation analyses in humans and mice provide evidence that they play a remarkable variety of roles in development and human disease. Previous studies have established that the mouse mutant ragged-opossum (Raop) expresses a dominant-negative form of the SOX18 transcription factor that interferes with the function of wild type SOX18 and of the related SOXF-subgroup proteins SOX7 and -17. Here we show that skin and oral mucosa in homozygous Raop mice display extensive detachment of epithelium from the underlying mesenchymal tissue, caused by tearing of epithelial cells just above the plasma membrane due to hemidesmosome disruption. In addition, several hemidesmosome proteins expression were found to be dysregulated in the Raop mice. Our data suggest that SOXF transcription factors play a role in regulating formation of cytoplasmic plaque protein assembly, and that disrupted SOXF function results in epidermolysis bullosa-like skin phenotypes.
AB - Hemidesmosomes are composed of intricate networks of proteins, that are an essential attachment apparatus for the integrity of epithelial tissue. Disruption leads to blistering diseases such as epidermolysis bullosa. Members of the Sox gene family show dynamic and diverse expression patterns during development and mutation analyses in humans and mice provide evidence that they play a remarkable variety of roles in development and human disease. Previous studies have established that the mouse mutant ragged-opossum (Raop) expresses a dominant-negative form of the SOX18 transcription factor that interferes with the function of wild type SOX18 and of the related SOXF-subgroup proteins SOX7 and -17. Here we show that skin and oral mucosa in homozygous Raop mice display extensive detachment of epithelium from the underlying mesenchymal tissue, caused by tearing of epithelial cells just above the plasma membrane due to hemidesmosome disruption. In addition, several hemidesmosome proteins expression were found to be dysregulated in the Raop mice. Our data suggest that SOXF transcription factors play a role in regulating formation of cytoplasmic plaque protein assembly, and that disrupted SOXF function results in epidermolysis bullosa-like skin phenotypes.
UR - http://www.scopus.com/inward/record.url?scp=84866042260&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84866042260&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0043857
DO - 10.1371/journal.pone.0043857
M3 - Article
C2 - 22962592
AN - SCOPUS:84866042260
SN - 1932-6203
VL - 7
JO - PloS one
JF - PloS one
IS - 9
M1 - e43857
ER -