Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors

Hsieh Chih Hsu, Chen Yu Pan

研究成果: Conference contribution

摘要

Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework also optimizes the deep learning model (LSTM) through clustering analysis, and through cross-validation, the accuracy of the model is 97.45%. At the same time, this model can reduce energy consumption by 53%.

原文English
主出版物標題2023 9th International Conference on Applied System Innovation, ICASI 2023
編輯Shoou-Jinn Chang, Sheng-Joue Young, Artde Donald Kin-Tak Lam, Liang-Wen Ji, Stephen D. Prior
發行者Institute of Electrical and Electronics Engineers Inc.
頁面80-82
頁數3
ISBN(電子)9798350398380
DOIs
出版狀態Published - 2023
事件9th International Conference on Applied System Innovation, ICASI 2023 - Chiba, Japan
持續時間: 2023 4月 212023 4月 25

出版系列

名字2023 9th International Conference on Applied System Innovation, ICASI 2023

Conference

Conference9th International Conference on Applied System Innovation, ICASI 2023
國家/地區Japan
城市Chiba
期間23-04-2123-04-25

All Science Journal Classification (ASJC) codes

  • 人工智慧
  • 電腦科學應用
  • 硬體和架構
  • 資訊系統
  • 資訊系統與管理
  • 電氣與電子工程
  • 機械工業
  • 電子、光磁材料

指紋

深入研究「Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors」主題。共同形成了獨特的指紋。

引用此