Decentralized precoding for multicell MIMO downlink

Winston W.L. Ho, Tony Q.S. Quek, Sumei Sun, Robert W. Heath

研究成果: Article同行評審

59 引文 斯高帕斯(Scopus)


Interference is a performance limiting factor in dense cellular networks with aggressive frequency reuse. Cooperation among base stations (BSs) is a promising approach for improving data rates by eliminating or mitigating interference. For the downlink, the highest spectral efficiency gains are achieved through precoding with full coordination, which requires complete channel state information (CSI) and data be shared among BSs at the cost of significant utilization of the backhaul. In this paper, we propose distributed precoding techniques for the multicell MIMO downlink. Unlike prior work, our proposed precoders are both decentralized with respect to the BSs as well as capable of enabling multiple users to share the same frequency carrier spatially within each cell. Specifically, each BS designs its own precoder without requiring data or downlink CSI of links from other BSs. Since CSI is unlikely to be perfect, we study the effect of imperfect CSI on our proposed precoders and propose a robust precoder in the presence of CSI uncertainty. Simulations show that our proposed methods enjoy a rate increase with SNR similar to multicell joint dirty paper coding in the high SNR regime due to effective interference mitigation. Numerical results reflect the sensitivity of each proposed precoder with respect to the imperfectness in the available CSI.

頁(從 - 到)1798-1809
期刊IEEE Transactions on Wireless Communications
出版狀態Published - 2011 6月

All Science Journal Classification (ASJC) codes

  • 電腦科學應用
  • 電氣與電子工程
  • 應用數學


深入研究「Decentralized precoding for multicell MIMO downlink」主題。共同形成了獨特的指紋。