Deep Encoder-Decoder Network for Lane-Following on Autonomous Vehicle

Abida Khanum, Chao Yang Lee, Chu Sing Yang

研究成果: Conference contribution

摘要

Nowadays there is a vast interest in a self-driving car from both academia and industry. The main reason behind recently enormous progress in deep learning approaches for an autonomous vehicle. The main objective of this research is to propose a deep hybrid encoder-decoder network with input multi-modal data to predict the decision-making task. Therefore, the proposed approaches are tested by both real and simulation data but in the real data single camera image and simulator data three-camera image data. The proposed method analyzes the effects of input data. The experiment results in analyses in terms of Computational time as-well-as parameters in which values of the steering wheel and brake both real and simulated data are (6ms and 9ms) respectively. The analysis shows that our method performs well in driving action prediction.

原文English
主出版物標題Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022
發行者Institute of Electrical and Electronics Engineers Inc.
頁面583-584
頁數2
ISBN(電子)9781665470506
DOIs
出版狀態Published - 2022
事件2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022 - Taipei, Taiwan
持續時間: 2022 7月 62022 7月 8

出版系列

名字Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022

Conference

Conference2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022
國家/地區Taiwan
城市Taipei
期間22-07-0622-07-08

All Science Journal Classification (ASJC) codes

  • 人工智慧
  • 電腦科學應用
  • 硬體和架構
  • 可再生能源、永續發展與環境
  • 電氣與電子工程
  • 媒體技術
  • 健康資訊學
  • 儀器

指紋

深入研究「Deep Encoder-Decoder Network for Lane-Following on Autonomous Vehicle」主題。共同形成了獨特的指紋。

引用此