Deep learning approaches for modeling laser-driven proton beams via phase-stable acceleration

Yao Li Liu, Yen Chen Chen, Chun Sung Jao, Mao Syun Wong, Chun Han Huang, Han Wei Chen, Shogo Isayama, Yasuhiro Kuramitsu

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)

摘要

Deep learning (DL) has recently become a powerful tool for optimizing parameters and predicting phenomena to boost laser-driven ion acceleration. We developed a neural network surrogate model using an ensemble of 355 one-dimensional particle-in-cell simulations to validate the theory of phase-stable acceleration (PSA) driven by a circularly polarized laser driver. Our DL predictions confirm the PSA theory and reveal a discrepancy in the required target density for stable ion acceleration at larger target thicknesses. We discuss the physical reasons behind this density underestimation based on our DL insights.

原文English
文章編號013106
期刊Physics of Plasmas
31
發行號1
DOIs
出版狀態Published - 2024 1月 1

All Science Journal Classification (ASJC) codes

  • 凝聚態物理學

指紋

深入研究「Deep learning approaches for modeling laser-driven proton beams via phase-stable acceleration」主題。共同形成了獨特的指紋。

引用此