Demagnetization fault diagnosis of a PMSM using auto-encoder and k-means clustering

Lien Kai Chang, Shun Hong Wang, Mi Ching Tsai

研究成果: Article同行評審

14 引文 斯高帕斯(Scopus)

摘要

In recent years, many motor fault diagnosis methods have been proposed by analyzing vibration, sound, electrical signals, etc. To detect motor fault without additional sensors, in this study, we developed a fault diagnosis methodology using the signals from a motor servo driver. Based on the servo driver signals, the demagnetization fault diagnosis of permanent magnet synchronous motors (PMSMs) was implemented using an autoencoder and K-means algorithm. In this study, the PMSM demagnetization fault diagnosis was performed in three states: normal, mild demagnetization fault, and severe demagnetization fault. The experimental results indicate that the proposed method can achieve 96% accuracy to reveal the demagnetization of PMSMs.

原文English
文章編號en13174467
期刊Energies
13
發行號17
DOIs
出版狀態Published - 2020 9月

All Science Journal Classification (ASJC) codes

  • 可再生能源、永續發展與環境
  • 能源工程與電力技術
  • 能源(雜項)
  • 控制和優化
  • 電氣與電子工程

指紋

深入研究「Demagnetization fault diagnosis of a PMSM using auto-encoder and k-means clustering」主題。共同形成了獨特的指紋。

引用此