Derivation of Modified reynolds equation-A porous media model

研究成果: Article同行評審

35 引文 斯高帕斯(Scopus)


In this study, a porous media model is developed which can be applied to thin film lubrication problems. The microstructure of bearing surfaces is modeled as porous layers attached to the impermeable substrate. The Brinkman-extended Darcy equations and Stokes' equations are utilized to model the flow in the porous region and fluid film region, respectively. The stress jump boundary condition at the porous media/fluid film interface and effects of viscous shear are included in deriving the modified Reynolds equation. The present model can correct and modify a previous study based on the Darcy model with slip-fiow effects or another based on the Brinkman-extended Darcy model with stress continuity at the porous media/fluid film interface. In the results, the effects of material properties: viscosity ratio (α2i), thickness of porous layer (Δi), permeability (Ki), stress jump parameter (βi), on the velocity distributions, and performance of one-dimensional converging wedge problems are discussed.

頁(從 - 到)823-829
期刊Journal of Tribology
出版狀態Published - 1999 十月

All Science Journal Classification (ASJC) codes

  • 材料力學
  • 機械工業
  • 表面和介面
  • 表面、塗料和薄膜


深入研究「Derivation of Modified reynolds equation-A porous media model」主題。共同形成了獨特的指紋。