Design and simulation of electromagnetic linear actuators for jet dispensers

Minh Sang Tran, Sheng Jye Hwang

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)

摘要

Three electromagnetic-based linear actuators, namely a solenoid actuator (SA), a moving coil actuator (MCA), and a moving magnet actuator (MMA), are proposed for driving the needle in a jet dispenser. The total resistance force acting on the needle during operation, including the damping force, the friction force, the inertia force, the compression spring force, and the backpressure, are measured by an experimental model. The thrust force required to overcome this resistance force is then predicted for each actuator using finite element analysis (FEA) simulations. Simple two-dimensional models of the SA, MCA, and MMA are constructed using the same coil dimensions in every case in order to facilitate an objective comparison between them. Simulations in ANSYS Maxwell software are then performed to adjust the specific dimensions of each actuator structure in such a way as to generate the thrust force required to drive the needle in the jet dispenser with the minimum excitation current possible. The simulation results show that for a maximum needle driving frequency of 250 Hz and a stroke length of 0.5 mm, the excitation current required to generate the necessary thrust force is equal to 1.8 A and 1.9 A for the MCA and MMA models, respectively, when a return spring is not used, and 2.2 A, 3.8 A, and 4.1 A for the SA, MCA, and MMA models, respectively, when a return spring is employed. It is additionally shown that the thrust force drop of the MCA and MMA models is far less than that of the SA model, about 0.7%, 1.8%, and 61% for three models, respectively. Three preliminary designs for jet dispensers incorporating the proposed actuators are also generated for reference purposes.

原文English
文章編號1653
期刊Applied Sciences (Switzerland)
10
發行號5
DOIs
出版狀態Published - 2020 3月 1

All Science Journal Classification (ASJC) codes

  • 一般材料科學
  • 儀器
  • 一般工程
  • 製程化學與技術
  • 電腦科學應用
  • 流體流動和轉移過程

指紋

深入研究「Design and simulation of electromagnetic linear actuators for jet dispensers」主題。共同形成了獨特的指紋。

引用此