Determining Continuous-Time State Equations from Discrete-Time State Equations Via the Principal qth Root Method

Leang S. Shieh, Jason S.H. Tsai, Sui R. Lian

研究成果: Article同行評審

40 引文 斯高帕斯(Scopus)

摘要

Fast computational methods are developed for finding the equivalent continuous-time state equations from discrete-time state equations. The computational methods utilize the direct truncation method, the matrix continued fraction method, and the geometric-series method in conjunction with the principal qth root of the discrete-time system matrix for quick determination of the approximants of a matrix logarithm function. It is shown that the use of the principal qth root of a matrix enables us to enlarge the convergence region of the expansion of a matrix logarithm function and to improve the accuracy of the approximants of the matrix logarithm function.

原文English
頁(從 - 到)454-457
頁數4
期刊IEEE Transactions on Automatic Control
31
發行號5
DOIs
出版狀態Published - 1986 五月

All Science Journal Classification (ASJC) codes

  • 控制與系統工程
  • 電腦科學應用
  • 電氣與電子工程

指紋

深入研究「Determining Continuous-Time State Equations from Discrete-Time State Equations Via the Principal qth Root Method」主題。共同形成了獨特的指紋。

引用此