TY - JOUR
T1 - Development of ethosome-like catanionic vesicles for dermal drug delivery
AU - Liu, Yu San
AU - Wen, Chih Fang
AU - Yang, Yu Min
N1 - Funding Information:
This work was supported by the National Science Council of Taiwan through Grant NSC 100-2221-E-006-184 . The authors are grateful to Professors Tzung-Han Chou and Chia-Hua Liang at Chia Nan University of Pharmacy & Science for their providing access to the high performance liquid chromatography and fluorescence polarization measurements. The authors are also grateful to Professor Lynn L.H. Huang at National Cheng Kung University for her providing access to the rheometer.
PY - 2012/11
Y1 - 2012/11
N2 - A carrier for enhanced skin delivery of drugs has ever been discovered and named " ethosomes," which are phospholipid vesicular systems embodying ethanol in relatively high concentrations. This work aims at developing competent ethosome-like catanionic vesicles for dermal drug delivery. The preparation of double-chained catanionic surfactant (or ion-pair-amphiphile, IPA) DeTMA-DS from single-chained cationic surfactant (decyltrimethylammonium bromide, DeTMAB) and anionic surfactant (sodium dodecyl sulfate, SDS) by the precipitation method was demonstrated first. This lipid-like surfactant was thereafter used as the material to prepare the catanionic vesicles with the aid of ethanol as the cosolvent in aqueous buffer solution by a simple semispontaneous process. Formability and physical stability of the as-prepared catanionic vesicles were discussed based on the viewpoint of mixed solvent dielectric constant. The potential application of the catanionic vesicles as nano-carriers in dermal drug delivery was demonstrated by the encapsulation of vitamin E acetate (α-tocopherol acetate, α-TA). Furthermore, effects of cholesterol addition on physical stability, bilayer membrane rigidity, and encapsulation efficiency of the catanionic vesicles with 20% ethanol, in which the most stable vesicle can be formed, was systematically studied. The experimental results revealed that vesicle stability can be enhanced further by the addition of cholesterol. The vesicle membrane rigidity and encapsulation efficiency are both increased with the increase of cholesterol addition. It is, therefore, suggested that the encapsulation efficiency of α-TA in the catanionic vesicles is dependent on the vesicle membrane rigidity. Finally, the results of gelation of catanionic vesicles by a water soluble polymer with hydrophobical modification were also reported and the role played by the vesicular bilayer rigidity in the interaction between catanionic vesicles and polymer molecules were discussed. The phase maps and the rheological properties obtained for mixtures of catanionic vesicles and polymer molecules may provide useful information for practical use of the catanionic vesicles in dermal delivery of drugs.
AB - A carrier for enhanced skin delivery of drugs has ever been discovered and named " ethosomes," which are phospholipid vesicular systems embodying ethanol in relatively high concentrations. This work aims at developing competent ethosome-like catanionic vesicles for dermal drug delivery. The preparation of double-chained catanionic surfactant (or ion-pair-amphiphile, IPA) DeTMA-DS from single-chained cationic surfactant (decyltrimethylammonium bromide, DeTMAB) and anionic surfactant (sodium dodecyl sulfate, SDS) by the precipitation method was demonstrated first. This lipid-like surfactant was thereafter used as the material to prepare the catanionic vesicles with the aid of ethanol as the cosolvent in aqueous buffer solution by a simple semispontaneous process. Formability and physical stability of the as-prepared catanionic vesicles were discussed based on the viewpoint of mixed solvent dielectric constant. The potential application of the catanionic vesicles as nano-carriers in dermal drug delivery was demonstrated by the encapsulation of vitamin E acetate (α-tocopherol acetate, α-TA). Furthermore, effects of cholesterol addition on physical stability, bilayer membrane rigidity, and encapsulation efficiency of the catanionic vesicles with 20% ethanol, in which the most stable vesicle can be formed, was systematically studied. The experimental results revealed that vesicle stability can be enhanced further by the addition of cholesterol. The vesicle membrane rigidity and encapsulation efficiency are both increased with the increase of cholesterol addition. It is, therefore, suggested that the encapsulation efficiency of α-TA in the catanionic vesicles is dependent on the vesicle membrane rigidity. Finally, the results of gelation of catanionic vesicles by a water soluble polymer with hydrophobical modification were also reported and the role played by the vesicular bilayer rigidity in the interaction between catanionic vesicles and polymer molecules were discussed. The phase maps and the rheological properties obtained for mixtures of catanionic vesicles and polymer molecules may provide useful information for practical use of the catanionic vesicles in dermal delivery of drugs.
UR - http://www.scopus.com/inward/record.url?scp=84870241200&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84870241200&partnerID=8YFLogxK
U2 - 10.1016/j.jtice.2012.06.008
DO - 10.1016/j.jtice.2012.06.008
M3 - Article
AN - SCOPUS:84870241200
SN - 1876-1070
VL - 43
SP - 830
EP - 838
JO - Journal of the Taiwan Institute of Chemical Engineers
JF - Journal of the Taiwan Institute of Chemical Engineers
IS - 6
ER -