TY - JOUR
T1 - Development of hourly indoor pm2.5 concentration prediction model
T2 - The role of outdoor air, ventilation, building characteristic, and human activity
AU - Jung, Chien Cheng
AU - Lin, Wan Yi
AU - Hsu, Nai Yun
AU - Wu, Chih Da
AU - Chang, Hao Ting
AU - Su, Huey Jen
N1 - Funding Information:
This research was funded by Ministry of Science and Technology, Taiwan: NSC 101-2221-E-006-158-MY3.
Funding Information:
Funding: This research was funded by Ministry of Science and Technology, Taiwan: NSC 101-2221-E-006-158-MY3.
Publisher Copyright:
© MDPI AG. All rights reserved.
PY - 2020/8/2
Y1 - 2020/8/2
N2 - Exposure to indoor particulate matter less than 2.5 µm in diameter (PM2.5 ) is a critical health risk factor. Therefore, measuring indoor PM2.5 concentrations is important for assessing their health risks and further investigating the sources and influential factors. However, installing monitoring instruments to collect indoor PM2.5 data is difficult and expensive. Therefore, several indoor PM2.5 concentration prediction models have been developed. However, these prediction models only assess the daily average PM2.5 concentrations in cold or temperate regions. The factors that influence PM2.5 concentration differ according to climatic conditions. In this study, we developed a prediction model for hourly indoor PM2.5 concentrations in Taiwan (tropical and subtropical region) by using a multiple linear regression model and investigated the impact factor. The sample comprised 93 study cases (1979 measurements) and 25 potential predictor variables. Cross-validation was performed to assess performance. The prediction model explained 74% of the variation, and outdoor PM2.5 concentrations, the difference between indoor and outdoor CO2 levels, building type, building floor level, bed sheet cleaning, bed sheet replacement, and mosquito coil burning were included in the prediction model. Cross-validation explained 75% of variation on average. The results also confirm that the prediction model can be used to estimate indoor PM2.5 concentrations across seasons and areas. In summary, we developed a prediction model of hourly indoor PM2.5 concentrations and suggested that outdoor PM2.5 concentrations, ventilation, building characteristics, and human activities should be considered. Moreover, it is important to consider outdoor air quality while occupants open or close windows or doors for regulating ventilation rate and human activities changing also can reduce indoor PM2.5 concentrations.
AB - Exposure to indoor particulate matter less than 2.5 µm in diameter (PM2.5 ) is a critical health risk factor. Therefore, measuring indoor PM2.5 concentrations is important for assessing their health risks and further investigating the sources and influential factors. However, installing monitoring instruments to collect indoor PM2.5 data is difficult and expensive. Therefore, several indoor PM2.5 concentration prediction models have been developed. However, these prediction models only assess the daily average PM2.5 concentrations in cold or temperate regions. The factors that influence PM2.5 concentration differ according to climatic conditions. In this study, we developed a prediction model for hourly indoor PM2.5 concentrations in Taiwan (tropical and subtropical region) by using a multiple linear regression model and investigated the impact factor. The sample comprised 93 study cases (1979 measurements) and 25 potential predictor variables. Cross-validation was performed to assess performance. The prediction model explained 74% of the variation, and outdoor PM2.5 concentrations, the difference between indoor and outdoor CO2 levels, building type, building floor level, bed sheet cleaning, bed sheet replacement, and mosquito coil burning were included in the prediction model. Cross-validation explained 75% of variation on average. The results also confirm that the prediction model can be used to estimate indoor PM2.5 concentrations across seasons and areas. In summary, we developed a prediction model of hourly indoor PM2.5 concentrations and suggested that outdoor PM2.5 concentrations, ventilation, building characteristics, and human activities should be considered. Moreover, it is important to consider outdoor air quality while occupants open or close windows or doors for regulating ventilation rate and human activities changing also can reduce indoor PM2.5 concentrations.
UR - http://www.scopus.com/inward/record.url?scp=85089625435&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089625435&partnerID=8YFLogxK
U2 - 10.3390/ijerph17165906
DO - 10.3390/ijerph17165906
M3 - Article
C2 - 32823930
AN - SCOPUS:85089625435
SN - 1661-7827
VL - 17
SP - 1
EP - 17
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 16
M1 - 5906
ER -