摘要
Computer numerical control (CNC) tool-wear prediction (TWPred) is an important issue in the industry. Recently, researchers have demonstrated that deep-learning models (DLMs) are effective in TWPred. However, DLMs are ill-suited to small- and medium-scale manufacturers due to high computational costs. Methods exist to reduce the computational costs of DLMs, but most of them depend on overly-complex pruning processes that are not appropriate for the low-end computers used by the above manufacturers. Therefore, we developed a lightweight DLM and an automated framework for TWPred. The framework is based on two concepts: 1) the DLM was pruned by reducing the number of input data fields so the model itself remains unchanged and 2) we designed a framework that enables the automatic establishment of a lightweight DLM. These two concepts make the overall framework applicable to small- and medium-scale manufacturers. Finally, we used real-world dataset PHM 2010 to verify that the lightweight DLM can achieve almost the same reminding useful life (RUL) accuracy as the DLM (DLM: 95.55% and lightweight DLM: 95.51%) using only 0.88% of DLM parameters, which verifies the low cost and high precision of the proposed model.
原文 | English |
---|---|
文章編號 | 2506711 |
期刊 | IEEE Transactions on Instrumentation and Measurement |
卷 | 71 |
DOIs | |
出版狀態 | Published - 2022 |
All Science Journal Classification (ASJC) codes
- 儀器
- 電氣與電子工程