Device-to-device underlaid cellular networks under rician fading channels

Mugen Peng, Yuan Li, Tony Q.S. Quek, Chonggang Wang

研究成果: Article同行評審

117 引文 斯高帕斯(Scopus)


Using Device-to-device (D2D) communications in a cellular network is an economical and effective approach to increase the transmission data rate and extend the coverage. Nevertheless, the D2D underlaid cellular network is challenging due to the presence of inter-tier and intra-tier interferences. With necessarily lower antenna heights in D2D communication links, the fading channels are likely to contain strong line-of-sight components, which are different from the Rayleigh fading distribution in conventional two-tier heterogeneous networks. In this paper, we derive the success probability, spatial average rate, and area spectral efficiency performances for both cellular users and D2D users by taking into account the different channel propagations that they experience. Specifically, we employ stochastic geometry as an analysis framework to derive closed-form expressions for above performance metrics. Furthermore, to reduce cross-tier interferences and improve system performances, we propose a centralized opportunistic access control scheme as well as a mode selection mechanism. According to the analysis and simulations, we obtain interesting tradeoffs that depend on the effect of the channel propagation parameter, user node density, and the spectrum occupation ratio on the different performance metrics. This work highlights the importance of incorporating the suitable channel propagation model into the system design and analysis to obtain the realistic results and conclusions.

頁(從 - 到)4247-4259
期刊IEEE Transactions on Wireless Communications
出版狀態Published - 2014 8月

All Science Journal Classification (ASJC) codes

  • 電腦科學應用
  • 電氣與電子工程
  • 應用數學


深入研究「Device-to-device underlaid cellular networks under rician fading channels」主題。共同形成了獨特的指紋。