Dexmedetomidine, an α2-adrenergic agonist, inhibits neuronal delayed-rectifier potassium current and sodium current

B. S. Chen, H. Peng, S. N. Wu

研究成果: Article同行評審

68 引文 斯高帕斯(Scopus)

摘要

Background: Dexmedetomidine (DEX), a selective agonist of α2-adrenergic receptors, is recognized to facilitate analgesia and anaesthesia in humans. Despite the potential for wide use, its effects on ion currents and membrane potential in neurones remain largely unclear. Methods: We investigated the effects of DEX on ion channels in NG108-15 neuronal cells differentiated with dibutyryl cyclic AMP and in cultured cerebellar neurones. Results: DEX suppressed the amplitude of delayed rectifier K+ current [IK(DR)] in a concentration-dependent manner with an IC50 value of 4.6 μM in NG108-15 cells. No change in the steady-state inactivation of IK(DR) was evident in the presence of DEX. A minimal binding scheme was also used to evaluate DEX-induced block of IK(DR). Inhibition of IK(DR) by DEX was still observed in cells preincubated with yohimbine (10 μM) or efaroxan (10 μM). DEX depressed the peak amplitude of Na+ current (INa), whereas it had minimal effect on L-type Ca2+ current. Under current-clamp configuration, DEX increased the duration of action potentials (APs). IK(DR) and I Na in response to AP waveforms were more sensitive to block by DEX than those elicited during rectangular pulses. In isolated cerebellar granule cells, DEX also effectively suppressed IK(DR). Conclusions: The effects of DEX are not limited to its interactions with α2- adrenergic receptors. Inhibitory effects on IK(DR) and INa constitute one of the underlying mechanisms through which DEX and its structurally related compounds might affect neuronal activity in vivo.

原文English
頁(從 - 到)244-254
頁數11
期刊British Journal of Anaesthesia
103
發行號2
DOIs
出版狀態Published - 2009 8月

All Science Journal Classification (ASJC) codes

  • 麻醉與疼痛醫學

指紋

深入研究「Dexmedetomidine, an α2-adrenergic agonist, inhibits neuronal delayed-rectifier potassium current and sodium current」主題。共同形成了獨特的指紋。

引用此