Differential differences in methylation status of putative imprinted genes among cloned swine genomes

Chih Jie Shen, Winston T.K. Cheng, Shinn Chih Wu, Hsiao Ling Chen, Tung Chou Tsai, Shang Hsun Yang, Chuan Mu Chen

研究成果: Article同行評審

25 引文 斯高帕斯(Scopus)


DNA methylation is a major epigenetic modification in the mammalian genome that regulates crucial aspects of gene function. Mammalian cloning by somatic cell nuclear transfer (SCNT) often results in gestational or neonatal failure with only a small proportion of manipulated embryos producing live births. Many of the embryos that survive to term later succumb to a variety of abnormalities that are likely due to inappropriate epigenetic reprogramming. Aberrant methylation patterns of imprinted genes in cloned cattle and mice have been elucidated, but few reports have analyzed the cloned pig genome. Four surviving cloned sows that were created by ear fibroblast nuclear transfer, each with a different life span and multiple organ defects, such as heart defects and bone growth delay, were used as epigenetic study materials. First, we identified four putative differential methylation regions (DMR) of imprinted genes in the wild-type pig genome, including two maternally imprinted loci (INS and IGF2) and two paternally imprinted loci (H19 and IGF2R). Aberrant DNA methylation, either hypermethylation or hypomethylation, commonly appeared in H19 (45% of imprinted loci hypermethylated vs. 30% hypomethylated), IGF2 (40% vs. 0%), INS (50% vs. 5%), and IGF2R (15% vs. 45%) in multiple tissues from these four cloned sows compared with wild-type pigs. Our data suggest that aberrant epigenetic modifications occur frequently in the genome of cloned swine. Even with successful production of cloned swine that avoid prenatal or postnatal death, the perturbation of methylation in imprinted genes still exists, which may be one of reason for their adult pathologies and short life. Understanding the aberrant pattern of gene imprinting would permit improvements in future cloning techniques.

期刊PloS one
出版狀態Published - 2012 二月 29

All Science Journal Classification (ASJC) codes

  • 生物化學、遺傳與分子生物學 (全部)
  • 農業與生物科學 (全部)
  • 多學科


深入研究「Differential differences in methylation status of putative imprinted genes among cloned swine genomes」主題。共同形成了獨特的指紋。