Direct identification of diamond growth precursor using almost pure CH4 or C2H2 near growth surface

Jih Jen Wu, Franklin Chau Nan Hong

研究成果: Article同行評審

21 引文 斯高帕斯(Scopus)

摘要

Diamond growth was studied by injecting thermally decomposed Cl atoms into CH4/H2 or C2H2TH2. Owing to the extremely short residence time (25 μs) and low gas temperature (< 1000 °C) in the decomposition system, the gas reaction is insignificant. Therefore, the carbon species near the substrate surface can be nearly identical to the input carbon source. With 0.3% CH4 being the input carbon source, CH4 remained the dominant carbon species near the surface (only 2.5% C2H2 was formed), and an almost continuous diamond film was deposited after 2 h growth. Raman spectra confirmed the formation of diamond. With 0.15% C2H2 being the input carbon source, C2H2 remained the dominant carbon species near the surface (10% CH4 was formed), but only a few very small particles were deposited. Therefore, we conclude that CH3 radicals seem the only diamond growth precursor under the Cl-rich conditions, whereas C2H2 is not efficient to grow diamond.

原文English
頁(從 - 到)185-187
頁數3
期刊Applied Physics Letters
70
發行號2
DOIs
出版狀態Published - 1997 一月 13

All Science Journal Classification (ASJC) codes

  • 物理與天文學(雜項)

指紋

深入研究「Direct identification of diamond growth precursor using almost pure CH<sub>4</sub> or C<sub>2</sub>H<sub>2</sub> near growth surface」主題。共同形成了獨特的指紋。

引用此