Disruption management of an inequality-based multi-fleet airline schedule by a multi-objective genetic algorithm

Tung Kuan Liu, Chi Ruey Jeng, Yu Hern Chang

研究成果: Article

28 引文 斯高帕斯(Scopus)


This paper presents a novel application of a Method of Inequality-based Multi-objective Genetic Algorithm (MMGA) to generate an efficient time-effective multi-fleet aircraft routing algorithm in response to the schedule disruption of short-haul flights. It attempts to optimize objective functions involving ground turn-around times, flight connections, flight swaps, total flight delay time and a 30-minute maximum delay time of original schedules. The MMGA approach, which combines a traditional Genetic Algorithm (GA) with a multi-objective optimization method, can address multiple objectives at the same time, then explore the optimal solution. The airline schedule disruption management problem is traditionally solved by Operations Research (OR) techniques that always require a precise mathematical model. However, airline operations involve too many factors that must be considered dynamically, making a precise mathematical model difficult to define. Experimental results based on a real airline flight schedule demonstrate that the proposed method, Multi-objective Optimization Airline Disruption Management by GA, can recover the perturbation efficiently within a very short time. Our results further demonstrate that the application can yield high quality solutions quickly and, consequently, has potential to be employed as a real-time decision support tool for practical complex airline operations.

頁(從 - 到)613-639
期刊Transportation Planning and Technology
出版狀態Published - 2008 十一月 19

All Science Journal Classification (ASJC) codes

  • Geography, Planning and Development
  • Transportation

指紋 深入研究「Disruption management of an inequality-based multi-fleet airline schedule by a multi-objective genetic algorithm」主題。共同形成了獨特的指紋。

  • 引用此