Disulfiram sensitizes a therapeutic-resistant glioblastoma to the TGF-β receptor inhibitor

Chan Chuan Liu, Cheng Lin Wu, Meng Xuan Lin, Chun I. Sze, Po Wu Gean

研究成果: Article同行評審


Despite neurosurgery following radiation and chemotherapy, residual glioblastoma (GBM) cells develop therapeutic resistance (TR) leading to recurrence. The GBM heterogeneity confers TR. Therefore, an effective strategy must target cancer stem cells (CSCs) and other malignant cancer cells. TGF-β and mesenchymal transition are the indicators for poor prognoses. The activity of aldehyde dehydrogenases (ALDHs) is a functional CSC marker. However, the interplay between TGF-β and ALDHs remains unclear. We developed radiation-resistant and radiation-temozolomide-resistant GBM models to investigate the underlying mechanisms conferring TR. Galunisertib is a drug targeting TGF-β receptors. Disulfiram (DSF) is an anti-alcoholism drug which functions by inhibiting ALDHs. The anti-tumor effects of combining DSF and Galunisertib were evaluated by in vitro cell grow, wound healing, Transwell assays, and in vivo orthotopic GBM model. Mesenchymal-like phenotype was facilitated by TGF-β in TR GBM. Additionally, TR activated ALDHs. DSF inhibited TR-induced cell migration and tumor sphere formation. However, DSF did not affect the tumor growth in vivo. Spectacularly, DSF sensitized TR GBM to Galunisertib both in vitro and in vivo. ALDH activity positively correlated with TGF-β-induced mesenchymal properties in TR GBM. CSCs and mesenchymal-like GBM cells targeted together by combining DSF and Galunisertib may be a good therapeutic strategy for recurrent GBM patients.

期刊International journal of molecular sciences
出版狀態Published - 2021 十月 1

All Science Journal Classification (ASJC) codes

  • 催化
  • 分子生物學
  • 光譜
  • 電腦科學應用
  • 物理與理論化學
  • 有機化學
  • 無機化學


深入研究「Disulfiram sensitizes a therapeutic-resistant glioblastoma to the TGF-β receptor inhibitor」主題。共同形成了獨特的指紋。