TY - JOUR
T1 - Dynamic expression of cathepsin L in the black soldier fly (Hermetia illucens) gut during Escherichia coli challenge
AU - Chiang, Yun Ru
AU - Lin, Han Tso
AU - Chang, Chao Wei
AU - Lin, Shih Ming
AU - Lin, John Han You
N1 - Publisher Copyright:
© 2024 Chiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/3
Y1 - 2024/3
N2 - The black soldier fly (BSF), Hermetia illucens, has the potential to serve as a valuable resource for waste bioconversion due to the ability of the larvae to thrive in a microbial-rich environment. Being an ecological decomposer, the survival of BSF larvae (BSFL) relies on developing an efficient defense system. Cathepsin L (CTSL) is a cysteine protease that plays roles in physiological and pathological processes. In this study, the full-length of CTSL was obtained from BSF. The 1,020-bp open reading frame encoded a preprotein of 339 amino acids with a predicted molecular weight of 32 kDa. The pro-domain contained the conserved ERFNIN, GNYD, and GCNGG motifs, which are all characteristic of CTSL. Homology revealed that the deduced amino acid sequence of BSF CTSL shared 74.22–72.99% identity with Diptera flies. Immunohistochemical (IHC) analysis showed the CTSL was predominantly localized in the gut, especially in the midgut. The mRNA expression of CTSL in different larval stages was analyzed by quantitative real-time PCR (RT-qPCR), which revealed that CTSL was expressed in the second to sixth instar, with the highest expression in the fifth instar. Following an immune challenge in vivo using Escherichia coli (E. coli), CTSL mRNA was significantly up-regulated at 6 h post-stimulation. The Z-Phe-Arg-AMC was gradually cleaved by the BSFL extract after 3 h post-stimulation. These results shed light on the potential role of CTSL in the defense mechanism that helps BSFL to survive against pathogens in a microbial-rich environment.
AB - The black soldier fly (BSF), Hermetia illucens, has the potential to serve as a valuable resource for waste bioconversion due to the ability of the larvae to thrive in a microbial-rich environment. Being an ecological decomposer, the survival of BSF larvae (BSFL) relies on developing an efficient defense system. Cathepsin L (CTSL) is a cysteine protease that plays roles in physiological and pathological processes. In this study, the full-length of CTSL was obtained from BSF. The 1,020-bp open reading frame encoded a preprotein of 339 amino acids with a predicted molecular weight of 32 kDa. The pro-domain contained the conserved ERFNIN, GNYD, and GCNGG motifs, which are all characteristic of CTSL. Homology revealed that the deduced amino acid sequence of BSF CTSL shared 74.22–72.99% identity with Diptera flies. Immunohistochemical (IHC) analysis showed the CTSL was predominantly localized in the gut, especially in the midgut. The mRNA expression of CTSL in different larval stages was analyzed by quantitative real-time PCR (RT-qPCR), which revealed that CTSL was expressed in the second to sixth instar, with the highest expression in the fifth instar. Following an immune challenge in vivo using Escherichia coli (E. coli), CTSL mRNA was significantly up-regulated at 6 h post-stimulation. The Z-Phe-Arg-AMC was gradually cleaved by the BSFL extract after 3 h post-stimulation. These results shed light on the potential role of CTSL in the defense mechanism that helps BSFL to survive against pathogens in a microbial-rich environment.
UR - http://www.scopus.com/inward/record.url?scp=85187177894&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85187177894&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0298338
DO - 10.1371/journal.pone.0298338
M3 - Article
C2 - 38451906
AN - SCOPUS:85187177894
SN - 1932-6203
VL - 19
JO - PloS one
JF - PloS one
IS - 3 March
M1 - e0298338
ER -