Dynamic Load Balancing in Multicomputer Database Systems Using Partition Tuning

Kien A. Hua, Chiang Lee, Chau M. Hua

研究成果: Article同行評審

9 引文 斯高帕斯(Scopus)


Shared nothing multiprocessor architecture is known to be more scalable to support very large databases. Compared to other join strategies, a hash-based join algorithm is particularly efficient and easily parallelized for this computation model. However, this hardware structure is very sensitive to the skew in tuple distribution. Unless the parallel hash join algorithm includes some dynamic load balancing mechanism, the skew effect can severely deteriorate the system performance. In this paper, we investigate this issue. In particular, three parallel hash join algorithms are presented. We implement a simulator to study the effectiveness of these schemes. The simulation model is validated by comparing the simulation results to those produced by the actual implementation of the algorithms running on a multiprocessor system. Our performance study indicates that a naive approach is not able to provide tangible savings. However, the carefully designed strategies can offer substantial improvement over conventional techniques for a wide range of skew conditions.

頁(從 - 到)968-983
期刊IEEE Transactions on Knowledge and Data Engineering
出版狀態Published - 1995 12月

All Science Journal Classification (ASJC) codes

  • 資訊系統
  • 電腦科學應用
  • 計算機理論與數學


深入研究「Dynamic Load Balancing in Multicomputer Database Systems Using Partition Tuning」主題。共同形成了獨特的指紋。