TY - JOUR
T1 - Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity Luisa Gouveia
AU - Ho, Shih Hsin
AU - Nakanishi, Akihito
AU - Ye, Xiaoting
AU - Chang, Jo Shu
AU - Chen, Chun Yen
AU - Hasunuma, Tomohisa
AU - Kondo, Akihiko
N1 - Publisher Copyright:
© 2015 Ho et al.; licensee BioMed Central.
PY - 2015
Y1 - 2015
N2 - Background: Marine microalgae are among the most promising lipid sources for biodiesel production because they can be grown on nonarable land without the use of potable water. Marine microalgae also harvest solar energy efficiently with a high growth rate, converting CO2 into lipids stored in the cells. Both light intensity and nitrogen availability strongly affect the growth, lipid accumulation, and fatty acid composition of oleaginous microalgae. However, very few studies have systematically examined how to optimize lipid productivity by adjusting irradiance intensity, and the metabolic dynamics that may lead to improved lipid accumulation in microalgae have not been elucidated. Little is known about the mechanism of lipid synthesis regulation in microalgae. Moreover, few studies have assessed the potential of using marine microalgae as oil producers. Results: In this work, a newly isolated marine microalga, Chlamydomonas sp. JSC4, was selected as a potential lipid producer, and the effect of photobioreactor operations on cell growth and lipid production was investigated. The combined effects of light intensity and nitrogen depletion stresses on growth and lipid accumulation were further explored in an effort to markedly improve lipid production and quality. The optimal lipid productivity and content attained were 312 mg L-1 d-1 and 43.1% per unit dry cell weight, respectively. This lipid productivity is the highest ever reported for marine microalgae. Metabolic intermediates were profiled over time to observe transient changes during lipid accumulation triggered by combined stresses. Finally, metabolite turnover was also assessed using an in vivo 13C-labeling technique to directly measure the flow of carbon during lipid biosynthesis under stress associated with light intensity and nitrogen deficiency. Conclusions: This work demonstrates the synergistic integration of cultivation and dynamic metabolic profiling technologies to develop a simple and effective strategy for enhancing oil production in a marine microalga. The knowledge obtained from this study could be useful in assessing the feasibility of marine microalgae biodiesel production and for understanding the links between dynamic metabolic profiles and lipid biosynthesis during the course of microalgal cultivation.
AB - Background: Marine microalgae are among the most promising lipid sources for biodiesel production because they can be grown on nonarable land without the use of potable water. Marine microalgae also harvest solar energy efficiently with a high growth rate, converting CO2 into lipids stored in the cells. Both light intensity and nitrogen availability strongly affect the growth, lipid accumulation, and fatty acid composition of oleaginous microalgae. However, very few studies have systematically examined how to optimize lipid productivity by adjusting irradiance intensity, and the metabolic dynamics that may lead to improved lipid accumulation in microalgae have not been elucidated. Little is known about the mechanism of lipid synthesis regulation in microalgae. Moreover, few studies have assessed the potential of using marine microalgae as oil producers. Results: In this work, a newly isolated marine microalga, Chlamydomonas sp. JSC4, was selected as a potential lipid producer, and the effect of photobioreactor operations on cell growth and lipid production was investigated. The combined effects of light intensity and nitrogen depletion stresses on growth and lipid accumulation were further explored in an effort to markedly improve lipid production and quality. The optimal lipid productivity and content attained were 312 mg L-1 d-1 and 43.1% per unit dry cell weight, respectively. This lipid productivity is the highest ever reported for marine microalgae. Metabolic intermediates were profiled over time to observe transient changes during lipid accumulation triggered by combined stresses. Finally, metabolite turnover was also assessed using an in vivo 13C-labeling technique to directly measure the flow of carbon during lipid biosynthesis under stress associated with light intensity and nitrogen deficiency. Conclusions: This work demonstrates the synergistic integration of cultivation and dynamic metabolic profiling technologies to develop a simple and effective strategy for enhancing oil production in a marine microalga. The knowledge obtained from this study could be useful in assessing the feasibility of marine microalgae biodiesel production and for understanding the links between dynamic metabolic profiles and lipid biosynthesis during the course of microalgal cultivation.
UR - http://www.scopus.com/inward/record.url?scp=84925394132&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84925394132&partnerID=8YFLogxK
U2 - 10.1186/s13068-015-0226-y
DO - 10.1186/s13068-015-0226-y
M3 - Article
AN - SCOPUS:84925394132
SN - 1754-6834
VL - 8
JO - Biotechnology for Biofuels
JF - Biotechnology for Biofuels
IS - 1
M1 - 48
ER -