Effect of elbow flexion on upper extremity impact forces during a fall

Pei Hsi Chou, You Li Chou, Chii-Jeng Lin, Fong-chin Su, Shu Zon Lou, Chyan Fei Lin, Gwo Feng Huang

研究成果: Article

48 引文 斯高帕斯(Scopus)


Objective. The overall objectives are to develop a biomechanical model for a simulated fall with outstretched hand. Design. Cross-sectional study involving young healthy volunteers in a university research laboratory setting. Background. Little is known about the factors which influence fracture risk during a fall on outstretched hand.Methods. A group of 11 male subjects volunteered for this investigation. A set of eight reflective markers was placed bilaterally on selected anatomic landmarks. Subjects were suspended with both elbows extended and wrists dorsiflexed, preparing to impact the ground and force plates from two different fall heights: 3 and 6 cm. Two different postures for the elbows were employed. In the elbow extension experiment, the elbows were extended at all times. In the elbow flexion experiment, the elbows were extended at impact, but then flexed immediately, as though in the initial downward phase of a push-up exercise. Result. Increasing the fall height significantly increased the upper extremity axial forces by 10% and 5%. No significantly different differences were found in the axial forces applied to the wrist, elbow or shoulder between the elbow flexion and elbow extension trials, but the elbow mediolateral shear force was 68% larger (P=0.002) in the extension trials.Conclusions. Performing an elbow flexion movement at impact reduces the first peak impact force value and postpones the maximum peak value. Although changing the fall arrest strategy from elbow extension to elbow flexion did not affect the peak impact force on the hand, it did require substantially greater elbow and shoulder muscle strengths. Relevance- This paper yields insights into how the physical demands of arresting mild falls may relate to upper extremity muscle capacity, joint dislocation and bony fracture.

頁(從 - 到)888-894
期刊Clinical Biomechanics
出版狀態Published - 2001 一月 1


All Science Journal Classification (ASJC) codes

  • Biophysics
  • Orthopedics and Sports Medicine