Effect of thickness of the p-AlGaN electron blocking layer on the improvement of ESD characteristics in GaN-Based LEDs

Chung Hsun Jang, J. K. Sheu, C. M. Tsai, S. C. Shei, W. C. Lai, S. J. Chang

研究成果: Article同行評審

37 引文 斯高帕斯(Scopus)

摘要

The following letter presents a study regarding GaN-based light-emitting diodes (LEDs) with p-type AlGaN electron blocking layers (EBLs) of different thicknesses. The study revealed that the LEDs could endure higher electrostatic discharge (ESD) levels as the thickness of the AlGaN EBL increased. The observed improvement in the ESD endurance ability could be attributed to the fact that the thickened p-AlGaN EBL may partly fill the dislocation-related pits that occur on the surface of the InGaN-GaN multiple-quantum well (MQW) and that are due to the strain and the low-temperature-growth process. If these dislocation-related pits are not partly suppressed, they will eventually result in numerous surface pits associated with threading dislocations that intersect the InGaN-GaN (MQW), thereby reducing the ESD endurance ability. The results of the experiment show that the ESD endurance voltages could increase from 1500 to 6000 V when the thickness of the p-AlGaN EBL in the GaN LEDs is increased from 32.5 to 130 nm, while the forward voltages and light output powers remained almost the same.

原文English
頁(從 - 到)1142-1144
頁數3
期刊IEEE Photonics Technology Letters
20
發行號13
DOIs
出版狀態Published - 2008 七月 1

All Science Journal Classification (ASJC) codes

  • 電子、光磁材料
  • 原子與分子物理與光學
  • 電氣與電子工程

指紋

深入研究「Effect of thickness of the p-AlGaN electron blocking layer on the improvement of ESD characteristics in GaN-Based LEDs」主題。共同形成了獨特的指紋。

引用此