摘要
A cell-collagen construct is commonly used to investigate the phenomenon of wound healing and to estimate the variables for tissue engineering. The purpose of this study was to assess the effects of cell concentration and collagen concentration on the contraction kinetics and mechanical properties of bone marrow stromal cell (BMSC) seeded collagen lattices. To investigate the effects of both variables on the contraction kinetics, the construct contraction was monitored up to 13 days. Incremental stress - relaxation tests were carried out after a 2-week incubation to obtain the stress - strain profiles, which were subsequently assessed in a quasilinear viscoelastic (QLV) model. During contraction, aligned BMSCs were observed first in the interior portion of the ring, followed by the middle portion and finally in the exterior portion. Constructs seeded with a higher initial cell concentration (higher than 1 x 105 cells/mL) or lower initial collagen concentration (lower than 2 mg/mL) exhibited faster contraction, higher ultimate stress, and superior elasticity and reduced relaxation behavior (p < 0.05). The cell-collagen model was successfully used to yield information regarding the initial cell concentration and the initial collagen concentration on contraction kinetics and mechanical behavior, which may have possible application in tissue engineering.
原文 | English |
---|---|
頁(從 - 到) | 1132-1139 |
頁數 | 8 |
期刊 | Journal of Biomedical Materials Research - Part A |
卷 | 93 |
發行號 | 3 |
DOIs | |
出版狀態 | Published - 2010 6月 1 |
All Science Journal Classification (ASJC) codes
- 陶瓷和複合材料
- 生物材料
- 生物醫學工程
- 金屬和合金