Effects of Cracks on Anomalous Mechanical Behavior and Energy Dissipation of Negative-Stiffness Plates

Yun Che Wang, Hsiang Wei Lai, Meng Wei Shen

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)

摘要

Mechanical behavior of negative-stiffness (NS) plates containing cracks, under sinusoidal straining, are numerically studied with the phase-field modeling techniques. Ferroelastic phase transition is triggered by thermal loading with the Landau-type energy function to generate the double-well potential. NS arises from regions of the multi-domain plates, and interacts with surrounding positive-stiffness neighboring regions to give rise to anomalous mechanical behavior and energy dissipation. It is found that the anomalies in effective elastic modulus and damping are preserved in the presence of cracks, regardless of their shape or tip radius. Cracks do not diminish the negative-stiffness effects on overall properties; they may provide more enhancement in dissipation. Crack tips concentrate stress, and cause phase transition to start earlier than other regions in the plates. As opposed to passive materials whose overall damping must be positive, we observe negative effective damping in the plates due to generation of energy from the phase transition.

原文English
文章編號1800489
期刊Physica Status Solidi (B) Basic Research
256
發行號1
DOIs
出版狀態Published - 2019 一月

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

指紋 深入研究「Effects of Cracks on Anomalous Mechanical Behavior and Energy Dissipation of Negative-Stiffness Plates」主題。共同形成了獨特的指紋。

引用此