Effects of high-order surface stress on static bending behavior of nanowires

Min Sen Chiu, Tungyang Chen

研究成果: Article

21 引文 斯高帕斯(Scopus)

摘要

Studies on surface effects in nano-sized materials or structures are often based on the framework of linear membrane theory, in which the field jumps at the interface are characterized by the generalized YoungLaplace equation. Here a recently proposed theoretical framework of high-order surface stress is implemented in a continuum mechanics model to simulate the bending behavior of nanowires. The high-order surface stress considers not only the effect of in-plane membrane surface stresses, but also the surface moments induced from the non-uniform surface stress across the layer thickness. We investigate the extent to which the high-order surface stress will influence the bending behavior of nanowires deviated from that predicted by the generalized YoungLaplace equation. Closed-form expressions for the deflection curves are derived for nanowires with different boundary conditions. These solutions are utilized to characterize the size-dependent overall Youngs moduli of NWs. We demonstrate that, in comparison to the reported experimental data, the present framework provides more accurate results than those by the conventional surface stress model. This study might be helpful to accurately characterize the behavior of bending nanowires in a wide range of applications.

原文English
頁(從 - 到)714-718
頁數5
期刊Physica E: Low-Dimensional Systems and Nanostructures
44
發行號3
DOIs
出版狀態Published - 2011 十二月 1

    指紋

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics

引用此