Effects of LiNbO3-doping on properties of (Na0.535K0.48)NbO3 piezoelectric ceramics with high electromechanical coupling coefficient for application in surface acoustic wave devices

Chung Ming Weng, Cheng Che Tsai, Cheng Shong Hong, Jyh Sheen, Sheng Yuan Chu, Jian Fu Tang, Yi Hong Zou

研究成果: Article同行評審

9 引文 斯高帕斯(Scopus)

摘要

In this study, lead-free LiNbO3-doped (Na0.535K0.48)NbO3 (NKN) ceramics (NKLxN, x = 0–0.09) were prepared using a conventional mixed oxide method to investigate the effects of LiNbO3 additives on the microstructure and electrical properties. The addition of LiNbO3 reduced the optimal sintering temperature from 1100 to 950 ℃ and increased the bulk relative density to 99.61% (g/cm3) at x = 0.05 through the formation of a homogeneous microstructure. The electrical properties remained highly stable, even when the ambient temperature was increased from room temperature to 140 ℃. NKLxN ceramics sintered at 950 ℃ with x = 0.05 exhibited the following excellent piezoelectric properties: kp:50% (34%); kt:53% (40%); Qm:168 (112); d33:150 pC/N (80 pC/N); and tan δ:4% (8%). These values far exceed those of pure NKN ceramics sintered at 1100 ℃. Surface acoustic wave (SAW) devices fabricated using the proposed NKLxN (x = 0.05) ceramics presented high phase velocity of 3210 m/s, k2 of 6.7%, and TCF of approximately −282 ppm/℃. Our results clearly demonstrate the effectiveness of adding LiNbO3 to prevent deliquescence and thereby enhance resistance to the effects of humidity. The resulting devices are highly sensitive to changes in temperature, making them ideally suited to electromechanical transducers as well as SAW temperature sensors.

原文English
頁(從 - 到)11324-11330
頁數7
期刊Ceramics International
43
發行號14
DOIs
出版狀態Published - 2017 10月 1

All Science Journal Classification (ASJC) codes

  • 電子、光磁材料
  • 陶瓷和複合材料
  • 製程化學與技術
  • 表面、塗料和薄膜
  • 材料化學

指紋

深入研究「Effects of LiNbO3-doping on properties of (Na0.535K0.48)NbO3 piezoelectric ceramics with high electromechanical coupling coefficient for application in surface acoustic wave devices」主題。共同形成了獨特的指紋。

引用此