TY - JOUR
T1 - Effects of river flow velocity on the formation of landslide dams
AU - Chen, Kun Ting
AU - Chen, Xiao Qing
AU - Hu, Gui Sheng
AU - Kuo, Yu Shu
AU - Chen, Hua Yong
N1 - Funding Information:
We thank three anonymous reviewers for constructive comments on an earlier version of this manuscript. This research was supported by the National Natural Science Foundation of China (Grants No. 41661144028, 41771045 and 41501012), the CAS “Light of West China” Program, the Foundation for Young Scientist of Institute of Mountain Hazards and Environment, CAS (Grant No. SDS-QN-1912) and the Foundation of Youth Innovation Promotion Association, CAS (Grant No. 2017425).
Funding Information:
We thank three anonymous reviewers for constructive comments on an earlier version of this manuscript. This research was supported by the National Natural Science Foundation of China (Grants No. 41661144028, 41771045 and 41501012), the CAS ?Light of West China? Program, the Foundation for Young Scientist of Institute of Mountain Hazards and Environment, CAS (Grant No. SDS-QN-1912) and the Foundation of Youth Innovation Promotion Association, CAS (Grant No. 2017425).
Publisher Copyright:
© 2019, Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2019/11/1
Y1 - 2019/11/1
N2 - Natural dams are formed when landslides are triggered by heavy rainfall during extreme weather events in the mountainous areas of Taiwan. During landslide debris movement, two processes occur simultaneously: the movement of landslide debris from a slope onto the riverbed and the erosion of the debris under the action of high-velocity river flow. When the rate of landslide deposition in a river channel is higher than the rate of landslide debris erosion by the river flow, the landslide forms a natural dam by blocking the river channel. In this study, the effects of the rates of river flow erosion and landslide deposition (termed the erosive capacity and depositional capacity, respectively) on the formation of natural dams are quantified using a physics-based approach and are tested using a scaled physical model. We define a dimensionless velocity index vde as the ratio between the depositional capacity of landslide debris (vd) and the erosive capacity of water flow (ve). The experimental test results show that a landslide dam forms when landslide debris moves at high velocity into a river channel where the river-flow velocity is low, that is, the dimensionless velocity index vde > 54. Landslide debris will not have sufficient depositional capacity to block stream flow when the dimensionless velocity index vde < 47. The depositional capacity of a landslide can be determined from the slope angle and the friction of the sliding surface, while the erosive capacity of a dam can be determined using river flow velocity and rainfall conditions. The methodology described in this paper was applied to seven landslide dams that formed in Taiwan on 8 August 2009 during Typhoon Morakot, the Tangjiashan landslide dam case, and the Yingxiu-Wolong highway K24 landslide case. The dimensionless velocity index presented in this paper can be used before a rainstorm event occurs to determine if the formation of a landslide dam is possible.
AB - Natural dams are formed when landslides are triggered by heavy rainfall during extreme weather events in the mountainous areas of Taiwan. During landslide debris movement, two processes occur simultaneously: the movement of landslide debris from a slope onto the riverbed and the erosion of the debris under the action of high-velocity river flow. When the rate of landslide deposition in a river channel is higher than the rate of landslide debris erosion by the river flow, the landslide forms a natural dam by blocking the river channel. In this study, the effects of the rates of river flow erosion and landslide deposition (termed the erosive capacity and depositional capacity, respectively) on the formation of natural dams are quantified using a physics-based approach and are tested using a scaled physical model. We define a dimensionless velocity index vde as the ratio between the depositional capacity of landslide debris (vd) and the erosive capacity of water flow (ve). The experimental test results show that a landslide dam forms when landslide debris moves at high velocity into a river channel where the river-flow velocity is low, that is, the dimensionless velocity index vde > 54. Landslide debris will not have sufficient depositional capacity to block stream flow when the dimensionless velocity index vde < 47. The depositional capacity of a landslide can be determined from the slope angle and the friction of the sliding surface, while the erosive capacity of a dam can be determined using river flow velocity and rainfall conditions. The methodology described in this paper was applied to seven landslide dams that formed in Taiwan on 8 August 2009 during Typhoon Morakot, the Tangjiashan landslide dam case, and the Yingxiu-Wolong highway K24 landslide case. The dimensionless velocity index presented in this paper can be used before a rainstorm event occurs to determine if the formation of a landslide dam is possible.
UR - http://www.scopus.com/inward/record.url?scp=85075081675&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075081675&partnerID=8YFLogxK
U2 - 10.1007/s11629-018-5319-1
DO - 10.1007/s11629-018-5319-1
M3 - Article
AN - SCOPUS:85075081675
SN - 1672-6316
VL - 16
SP - 2502
EP - 2518
JO - Journal of Mountain Science
JF - Journal of Mountain Science
IS - 11
ER -