Effects of selective catalytic reduction on the emissions of persistent organic pollutants from a heavy-duty diesel engine

Nicholas Kiprotich Cheruiyot, Lin Chi Wang, Sheng Lun Lin, Hsi Hsien Yang, Yu Ting Chen

研究成果: Article同行評審

17 引文 斯高帕斯(Scopus)

摘要

The emissions of persistent organic pollutants (POPs) from diesel engines is becoming more important due to their proximity to human beings compared to stationary sources whose emission have been well controlled over the years. The selective catalytic reduction (SCR) have been adopted in the heavy-duty diesel engine (HDDE) to reduce the nitrogen oxide (NOx). SCR has also been reported to reduce the polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs). However, the memory effect and reformation of persistent organic pollutants (POPs) during SCR operation are not well understood. This study investigated the effect of Copper-zeolite SCR (CuZ SCR) on PCDD/F, PCB, polybrominated dibenzo-p-dioxin and dibenzofuran (PBDD/F), and polybrominated biphenyl (PBB) emissions from a HDDE at 50% and 75% engine load. Notably, PCDD/F and PCB toxicity emissions increased by 78.4% and 201%, respectively. The dominant PCDD/F congeners were OCDD, OCDF, 1,2,3,4,6,7,8-HpCDD, and 1,2,3,4,6,7,8-HpCDF and PCB-105, PCB-118 and PCB-77 for PCBs. More PCDFs were formed compared to PCDDs and lower chlorinated congeners increased more than the higher chlorinated ones. There was also an increase of PBDD/F concentrations from undetectable levels (ND) to 0.247 pg TEQ Nm–3 (4.00 pg TEQ L–1) after the SCR. However, only 1,2,3,4,6,7,8-HpBDF and OBDF contributed to the concentrations. PBBs was the only compound measured that reduced after the SCR. The only congener detected before and after the SCR was PBB 15. Consequently, the CuZ SCR could be a source of POPs under mid and high engine loads in this study. Further detail research is required to focus on the formation of POPs on the catalyst surfaces and structures.

原文English
頁(從 - 到)1558-1565
頁數8
期刊Aerosol and Air Quality Research
17
發行號6
DOIs
出版狀態Published - 2017

All Science Journal Classification (ASJC) codes

  • 環境化學
  • 污染

指紋

深入研究「Effects of selective catalytic reduction on the emissions of persistent organic pollutants from a heavy-duty diesel engine」主題。共同形成了獨特的指紋。

引用此