Efficient KNN processing over moving objects with uncertain velocity

Yuan Ko Huang, Chao Chun Chen, Chiang Lee

研究成果: Conference contribution

摘要

Spatio-temporal databases aim at combining the spatial and temporal characteristics of data. The continuous K-Nearest Neighbor (CKNN) query is an important type of spatiotemporal query that finds the K-Nearest Neighbors (KNNs) of a moving query object at each time instant within a given time interval [ts, te]. In this paper, we investigate how to process a CKNN query efficiently under the situation that each object moves with an uncertain velocity. This uncertainty on the velocity of each object inevitably results in high complexity of the CKNN problem. We propose a cost-effective PKNN algorithm to tackle the complicated problem incurred by this uncertainty.

原文English
主出版物標題Proceedings of the 15th ACM International Symposium on Advances in Geographic Information Systems, GIS 2007
頁面419-422
頁數4
DOIs
出版狀態Published - 2007
事件15th ACM International Symposium on Advances in Geographic Information Systems, GIS 2007 - Seattle, WA, United States
持續時間: 2007 11月 72007 11月 9

出版系列

名字GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems

Other

Other15th ACM International Symposium on Advances in Geographic Information Systems, GIS 2007
國家/地區United States
城市Seattle, WA
期間07-11-0707-11-09

All Science Journal Classification (ASJC) codes

  • 地表過程
  • 電腦科學應用
  • 建模與模擬
  • 電腦繪圖與電腦輔助設計
  • 資訊系統

指紋

深入研究「Efficient KNN processing over moving objects with uncertain velocity」主題。共同形成了獨特的指紋。

引用此