TY - JOUR
T1 - Electrical impedance tomography monitoring in acute respiratory distress syndrome patients with mechanical ventilation during prolonged positive end-expiratory pressure adjustments
AU - Hsu, Chia Fu
AU - Cheng, Jen Suo
AU - Lin, Wei Chi
AU - Ko, Yen Fen
AU - Cheng, Kuo Sheng
AU - Lin, Sheng Hsiang
AU - Chen, Chang Wen
N1 - Publisher Copyright:
© 2015.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - Background/purpose: The time required to reach oxygenation equilibrium after positive end-expiratory pressure (PEEP) adjustments in mechanically ventilated patients with acute respiratory distress syndrome (ARDS) is unclear. We used electrical impedance tomography to elucidate gas distribution and factors related to oxygenation status following PEEP in patients with ARDS. Methods: Nineteen mechanically ventilated ARDS patients were placed on baseline PEEP (PEEPB) for 1 hour, PEEPB - 4 cmH2O PEEP (PEEPL) for 30 minutes, and PEEPB + 4 cmH2O PEEP (PEEPH) for 1 hour. Tidal volume and respiratory rate were similar. Impedance changes, respiratory parameters, and arterial blood gases were measured at baseline, 5 minutes, and 30 minutes after PEEPL, and 5 minutes, 15 minutes, 30 minutes, and 1 hour after PEEPH. Results: PaO2/fraction of inspired oxygen (P/F ratio) decreased quickly from PEEPB to PEEPL, and stabilized 5 minutes after PEEPL. However the P/F ratio progressively increased from PEEPL to PEEPH, and a significantly higher P/F ratio and end-expiratory lung impedance were found at 60 minutes compared to 5 minutes after PEEPH. The end-expiratory lung impedance level significantly correlated with P/F ratio (p < 0.001). With increasing PEEP, dorsal ventilation significantly increased; however, regional ventilation did not change over time with PEEP level. Conclusion: Late improvements in oxygenation following PEEP escalation are probably due to slow recruitment in ventilated ARDS patients. Electrical impedance tomography may be an appropriate tool to assess recruitment and oxygenation status in patients with changes in PEEP.
AB - Background/purpose: The time required to reach oxygenation equilibrium after positive end-expiratory pressure (PEEP) adjustments in mechanically ventilated patients with acute respiratory distress syndrome (ARDS) is unclear. We used electrical impedance tomography to elucidate gas distribution and factors related to oxygenation status following PEEP in patients with ARDS. Methods: Nineteen mechanically ventilated ARDS patients were placed on baseline PEEP (PEEPB) for 1 hour, PEEPB - 4 cmH2O PEEP (PEEPL) for 30 minutes, and PEEPB + 4 cmH2O PEEP (PEEPH) for 1 hour. Tidal volume and respiratory rate were similar. Impedance changes, respiratory parameters, and arterial blood gases were measured at baseline, 5 minutes, and 30 minutes after PEEPL, and 5 minutes, 15 minutes, 30 minutes, and 1 hour after PEEPH. Results: PaO2/fraction of inspired oxygen (P/F ratio) decreased quickly from PEEPB to PEEPL, and stabilized 5 minutes after PEEPL. However the P/F ratio progressively increased from PEEPL to PEEPH, and a significantly higher P/F ratio and end-expiratory lung impedance were found at 60 minutes compared to 5 minutes after PEEPH. The end-expiratory lung impedance level significantly correlated with P/F ratio (p < 0.001). With increasing PEEP, dorsal ventilation significantly increased; however, regional ventilation did not change over time with PEEP level. Conclusion: Late improvements in oxygenation following PEEP escalation are probably due to slow recruitment in ventilated ARDS patients. Electrical impedance tomography may be an appropriate tool to assess recruitment and oxygenation status in patients with changes in PEEP.
UR - http://www.scopus.com/inward/record.url?scp=84960429624&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84960429624&partnerID=8YFLogxK
U2 - 10.1016/j.jfma.2015.03.001
DO - 10.1016/j.jfma.2015.03.001
M3 - Article
C2 - 25843526
AN - SCOPUS:84960429624
SN - 0929-6646
VL - 115
SP - 195
EP - 202
JO - Journal of the Formosan Medical Association
JF - Journal of the Formosan Medical Association
IS - 3
ER -