Electrochemical fabrication of nickel phosphide/reduced graphene oxide/nickel oxide composite on nickel foam as a high performance electrode for supercapacitors

Yu Lung Shih, Chieh Lun Wu, Tsai Yen Wu, Dong Hwang Chen

研究成果: Article同行評審

25 引文 斯高帕斯(Scopus)

摘要

Three-dimensional (3D) nickel phosphide/reduced graphene oxide (rGO)/nickel oxide composite on nickel foam (Ni2P/rGO/NiO/NF) is fabricated as a supercapacitor (SC) electrode material via the two-step electrochemical deposition of graphene oxide (GO) and nickel phosphide on the nickel foam. Typically, rGO/NiO/NF is fabricated at first by the electrochemical treatment of nickel foam at 10 V in 0.1 M sulfuric acid with GO for 10 min. The result reveals that NiO nanosheets are vertically grown on the surface of nickel foam and rGO is deposited on the surface of NiO/NF, leading to the enhancement of capacity. Secondly, nickel phosphide is electrochemically deposited on the surface of rGO/NiO/NF in the sodium hypophosphite-based aqueous solution at 10 mA cm-2 to yield the Ni2P/rGO/NiO/NF. The deposition of Ni2P leads to a much higher capacity. The optimal areal and mass specific capacities are obtained as 3.59 C cm-2 and 742 C g-1 at the electrochemical deposition time of 30 and 10 min, respectively. The high capacity reveals that the proposed two-step electrochemical fabrication process is facile and effective. In addition, the Ni2P/rGO/NiO/NF electrode-based all-solid-state asymmetric SC was fabricated and could successfully turn on a light-emitting diode light. This revealed its feasibility in practical application and confirmed that the resulting 3D Ni2P/rGO/NiO/NF has a great potential as the SC electrode material.

原文English
文章編號115601
期刊Nanotechnology
30
發行號11
DOIs
出版狀態Published - 2019 1月 22

All Science Journal Classification (ASJC) codes

  • 生物工程
  • 一般化學
  • 一般材料科學
  • 材料力學
  • 機械工業
  • 電氣與電子工程

指紋

深入研究「Electrochemical fabrication of nickel phosphide/reduced graphene oxide/nickel oxide composite on nickel foam as a high performance electrode for supercapacitors」主題。共同形成了獨特的指紋。

引用此